Spaces:
Runtime error
Runtime error
Upload encoders.py
Browse files- TabPFN/encoders.py +90 -72
TabPFN/encoders.py
CHANGED
|
@@ -8,26 +8,26 @@ from torch.nn import TransformerEncoder, TransformerEncoderLayer
|
|
| 8 |
|
| 9 |
|
| 10 |
class StyleEncoder(nn.Module):
|
| 11 |
-
def __init__(self,
|
| 12 |
super().__init__()
|
| 13 |
-
# self.embeddings = {}
|
| 14 |
self.em_size = em_size
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
# self.embeddings = nn.ModuleDict(self.embeddings)
|
| 19 |
-
self.embedding = nn.Linear(hyperparameter_definitions.shape[0], self.em_size)
|
| 20 |
-
|
| 21 |
-
def forward(self, hyperparameters): # T x B x num_features
|
| 22 |
-
# Make faster by using matrices
|
| 23 |
-
# sampled_embeddings = [torch.stack([
|
| 24 |
-
# self.embeddings[hp](torch.tensor([batch[hp]], device=self.embeddings[hp].weight.device, dtype=torch.float))
|
| 25 |
-
# for hp in batch
|
| 26 |
-
# ], -1).sum(-1) for batch in hyperparameters]
|
| 27 |
-
# return torch.stack(sampled_embeddings, 0)
|
| 28 |
return self.embedding(hyperparameters)
|
| 29 |
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
class _PositionalEncoding(nn.Module):
|
| 32 |
def __init__(self, d_model, dropout=0.):
|
| 33 |
super().__init__()
|
|
@@ -97,6 +97,71 @@ def get_normalized_uniform_encoder(encoder_creator):
|
|
| 97 |
return lambda in_dim, out_dim: nn.Sequential(Normalize(.5, math.sqrt(1/12)), encoder_creator(in_dim, out_dim))
|
| 98 |
|
| 99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
Linear = nn.Linear
|
| 101 |
MLP = lambda num_features, emsize: nn.Sequential(nn.Linear(num_features+1,emsize*2),
|
| 102 |
nn.ReLU(),
|
|
@@ -120,69 +185,23 @@ class NanHandlingEncoder(nn.Module):
|
|
| 120 |
x = torch.nan_to_num(x, nan=0.0)
|
| 121 |
return self.layer(x)
|
| 122 |
|
|
|
|
| 123 |
class Linear(nn.Linear):
|
| 124 |
-
def __init__(self, num_features, emsize):
|
| 125 |
super().__init__(num_features, emsize)
|
| 126 |
self.num_features = num_features
|
| 127 |
self.emsize = emsize
|
|
|
|
| 128 |
|
| 129 |
def forward(self, x):
|
| 130 |
-
|
|
|
|
| 131 |
return super().forward(x)
|
| 132 |
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
# Why would we want this? We can learn normalization and embedding of features
|
| 138 |
-
# , this might be more important for e.g. categorical, ordinal feats, nan detection
|
| 139 |
-
# However maybe this can be easily learned through transformer as well?
|
| 140 |
-
# A problem is to make this work across any sequence length and be independent of ordering
|
| 141 |
-
|
| 142 |
-
# We could use average and maximum pooling and use those with a linear layer
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
# Another idea !! Similar to this we would like to encode features so that their number is variable
|
| 146 |
-
# We would like to embed features, also using knowledge of the features in the entire sequence
|
| 147 |
-
|
| 148 |
-
# We could use convolution or another transformer
|
| 149 |
-
# Convolution:
|
| 150 |
-
|
| 151 |
-
# Transformer/Conv across sequence dimension that encodes and normalizes features
|
| 152 |
-
# -> Transformer across feature dimension that encodes features to a constant size
|
| 153 |
|
| 154 |
-
# Conv with flexible features but no sequence info: S,B,F -(reshape)-> S*B,1,F
|
| 155 |
-
# -(Conv1d)-> S*B,N,F -(AvgPool,MaxPool)-> S*B,N,1 -> S,B,N
|
| 156 |
-
# This probably won't work since it's missing a way to recognize which feature is encoded
|
| 157 |
-
|
| 158 |
-
# Transformer with flexible features: S,B,F -> F,B*S,1 -> F2,B*S,1 -> S,B,F2
|
| 159 |
-
|
| 160 |
-
def __init__(self, num_features, em_size):
|
| 161 |
-
super().__init__()
|
| 162 |
-
|
| 163 |
-
raise NotImplementedError()
|
| 164 |
-
# Seq_len, B, S -> Seq_len, B, E
|
| 165 |
-
#
|
| 166 |
-
self.convs = torch.nn.ModuleList([nn.Conv1d(64 if i else 1, 64, 3) for i in range(5)])
|
| 167 |
-
# self.linear = nn.Linear(64, emsize)
|
| 168 |
-
|
| 169 |
-
class TransformerBasedFeatureEncoder(nn.Module):
|
| 170 |
-
def __init__(self, num_features, emsize):
|
| 171 |
-
super().__init__()
|
| 172 |
-
|
| 173 |
-
hidden_emsize = emsize
|
| 174 |
-
encoder = Linear(1, hidden_emsize)
|
| 175 |
-
n_out = emsize
|
| 176 |
-
nhid = 2*emsize
|
| 177 |
-
dropout =0.0
|
| 178 |
-
nhead=4
|
| 179 |
-
nlayers=4
|
| 180 |
-
model = nn.Transformer(nhead=nhead, num_encoder_layers=4, num_decoder_layers=4, d_model=1)
|
| 181 |
-
|
| 182 |
-
def forward(self, *input):
|
| 183 |
-
# S,B,F -> F,S*B,1 -> F2,S*B,1 -> S,B,F2
|
| 184 |
-
input = input.transpose()
|
| 185 |
-
self.model(input)
|
| 186 |
|
| 187 |
class Conv(nn.Module):
|
| 188 |
def __init__(self, input_size, emsize):
|
|
@@ -190,7 +209,6 @@ class Conv(nn.Module):
|
|
| 190 |
self.convs = torch.nn.ModuleList([nn.Conv2d(64 if i else 1, 64, 3) for i in range(5)])
|
| 191 |
self.linear = nn.Linear(64,emsize)
|
| 192 |
|
| 193 |
-
|
| 194 |
def forward(self, x):
|
| 195 |
size = math.isqrt(x.shape[-1])
|
| 196 |
assert size*size == x.shape[-1]
|
|
@@ -204,8 +222,6 @@ class Conv(nn.Module):
|
|
| 204 |
return self.linear(x)
|
| 205 |
|
| 206 |
|
| 207 |
-
|
| 208 |
-
|
| 209 |
class CanEmb(nn.Embedding):
|
| 210 |
def __init__(self, num_features, num_embeddings: int, embedding_dim: int, *args, **kwargs):
|
| 211 |
assert embedding_dim % num_features == 0
|
|
@@ -218,8 +234,10 @@ class CanEmb(nn.Embedding):
|
|
| 218 |
x = super().forward(lx)
|
| 219 |
return x.view(*x.shape[:-2], -1)
|
| 220 |
|
|
|
|
| 221 |
def get_Canonical(num_classes):
|
| 222 |
return lambda num_features, emsize: CanEmb(num_features, num_classes, emsize)
|
| 223 |
|
|
|
|
| 224 |
def get_Embedding(num_embs_per_feature=100):
|
| 225 |
return lambda num_features, emsize: EmbeddingEncoder(num_features, emsize, num_embs=num_embs_per_feature)
|
|
|
|
| 8 |
|
| 9 |
|
| 10 |
class StyleEncoder(nn.Module):
|
| 11 |
+
def __init__(self, num_hyperparameters, em_size):
|
| 12 |
super().__init__()
|
|
|
|
| 13 |
self.em_size = em_size
|
| 14 |
+
self.embedding = nn.Linear(num_hyperparameters, self.em_size)
|
| 15 |
+
|
| 16 |
+
def forward(self, hyperparameters): # B x num_hps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
return self.embedding(hyperparameters)
|
| 18 |
|
| 19 |
|
| 20 |
+
class StyleEmbEncoder(nn.Module):
|
| 21 |
+
def __init__(self, num_hyperparameters, em_size, num_embeddings=100):
|
| 22 |
+
super().__init__()
|
| 23 |
+
assert num_hyperparameters == 1
|
| 24 |
+
self.em_size = em_size
|
| 25 |
+
self.embedding = nn.Embedding(num_embeddings, self.em_size)
|
| 26 |
+
|
| 27 |
+
def forward(self, hyperparameters): # B x num_hps
|
| 28 |
+
return self.embedding(hyperparameters.squeeze(1))
|
| 29 |
+
|
| 30 |
+
|
| 31 |
class _PositionalEncoding(nn.Module):
|
| 32 |
def __init__(self, d_model, dropout=0.):
|
| 33 |
super().__init__()
|
|
|
|
| 97 |
return lambda in_dim, out_dim: nn.Sequential(Normalize(.5, math.sqrt(1/12)), encoder_creator(in_dim, out_dim))
|
| 98 |
|
| 99 |
|
| 100 |
+
def get_normalized_encoder(encoder_creator, data_std):
|
| 101 |
+
return lambda in_dim, out_dim: nn.Sequential(Normalize(0., data_std), encoder_creator(in_dim, out_dim))
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class ZNormalize(nn.Module):
|
| 105 |
+
def forward(self, x):
|
| 106 |
+
return (x-x.mean(-1,keepdim=True))/x.std(-1,keepdim=True)
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
class AppendEmbeddingEncoder(nn.Module):
|
| 110 |
+
def __init__(self, base_encoder, num_features, emsize):
|
| 111 |
+
super().__init__()
|
| 112 |
+
self.num_features = num_features
|
| 113 |
+
self.base_encoder = base_encoder
|
| 114 |
+
self.emb = nn.Parameter(torch.zeros(emsize))
|
| 115 |
+
|
| 116 |
+
def forward(self, x):
|
| 117 |
+
if (x[-1] == 1.).all():
|
| 118 |
+
append_embedding = True
|
| 119 |
+
else:
|
| 120 |
+
assert (x[-1] == 0.).all(), "You need to specify as last position whether to append embedding. " \
|
| 121 |
+
"If you don't want this behavior, please use the wrapped encoder instead."
|
| 122 |
+
append_embedding = False
|
| 123 |
+
x = x[:-1]
|
| 124 |
+
encoded_x = self.base_encoder(x)
|
| 125 |
+
if append_embedding:
|
| 126 |
+
encoded_x = torch.cat([encoded_x, self.emb[None, None, :].repeat(1, encoded_x.shape[1], 1)], 0)
|
| 127 |
+
return encoded_x
|
| 128 |
+
|
| 129 |
+
def get_append_embedding_encoder(encoder_creator):
|
| 130 |
+
return lambda num_features, emsize: AppendEmbeddingEncoder(encoder_creator(num_features, emsize), num_features, emsize)
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
class VariableNumFeaturesEncoder(nn.Module):
|
| 134 |
+
def __init__(self, base_encoder, num_features):
|
| 135 |
+
super().__init__()
|
| 136 |
+
self.base_encoder = base_encoder
|
| 137 |
+
self.num_features = num_features
|
| 138 |
+
|
| 139 |
+
def forward(self, x):
|
| 140 |
+
x = x * (self.num_features/x.shape[-1])
|
| 141 |
+
x = torch.cat((x, torch.zeros(*x.shape[:-1], self.num_features - x.shape[-1], device=x.device)), -1)
|
| 142 |
+
return self.base_encoder(x)
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def get_variable_num_features_encoder(encoder_creator):
|
| 146 |
+
return lambda num_features, emsize: VariableNumFeaturesEncoder(encoder_creator(num_features, emsize), num_features)
|
| 147 |
+
|
| 148 |
+
class NoMeanEncoder(nn.Module):
|
| 149 |
+
"""
|
| 150 |
+
This can be useful for any prior that is translation invariant in x or y.
|
| 151 |
+
A standard GP for example is translation invariant in x.
|
| 152 |
+
That is, GP(x_test+const,x_train+const,y_train) = GP(x_test,x_train,y_train).
|
| 153 |
+
"""
|
| 154 |
+
def __init__(self, base_encoder):
|
| 155 |
+
super().__init__()
|
| 156 |
+
self.base_encoder = base_encoder
|
| 157 |
+
|
| 158 |
+
def forward(self, x):
|
| 159 |
+
return self.base_encoder(x - x.mean(0, keepdim=True))
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
def get_no_mean_encoder(encoder_creator):
|
| 163 |
+
return lambda num_features, emsize: NoMeanEncoder(encoder_creator(num_features, emsize))
|
| 164 |
+
|
| 165 |
Linear = nn.Linear
|
| 166 |
MLP = lambda num_features, emsize: nn.Sequential(nn.Linear(num_features+1,emsize*2),
|
| 167 |
nn.ReLU(),
|
|
|
|
| 185 |
x = torch.nan_to_num(x, nan=0.0)
|
| 186 |
return self.layer(x)
|
| 187 |
|
| 188 |
+
|
| 189 |
class Linear(nn.Linear):
|
| 190 |
+
def __init__(self, num_features, emsize, replace_nan_by_zero=False):
|
| 191 |
super().__init__(num_features, emsize)
|
| 192 |
self.num_features = num_features
|
| 193 |
self.emsize = emsize
|
| 194 |
+
self.replace_nan_by_zero = replace_nan_by_zero
|
| 195 |
|
| 196 |
def forward(self, x):
|
| 197 |
+
if self.replace_nan_by_zero:
|
| 198 |
+
x = torch.nan_to_num(x, nan=0.0)
|
| 199 |
return super().forward(x)
|
| 200 |
|
| 201 |
+
def __setstate__(self, state):
|
| 202 |
+
super().__setstate__(state)
|
| 203 |
+
self.__dict__.setdefault('replace_nan_by_zero', True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
|
| 206 |
class Conv(nn.Module):
|
| 207 |
def __init__(self, input_size, emsize):
|
|
|
|
| 209 |
self.convs = torch.nn.ModuleList([nn.Conv2d(64 if i else 1, 64, 3) for i in range(5)])
|
| 210 |
self.linear = nn.Linear(64,emsize)
|
| 211 |
|
|
|
|
| 212 |
def forward(self, x):
|
| 213 |
size = math.isqrt(x.shape[-1])
|
| 214 |
assert size*size == x.shape[-1]
|
|
|
|
| 222 |
return self.linear(x)
|
| 223 |
|
| 224 |
|
|
|
|
|
|
|
| 225 |
class CanEmb(nn.Embedding):
|
| 226 |
def __init__(self, num_features, num_embeddings: int, embedding_dim: int, *args, **kwargs):
|
| 227 |
assert embedding_dim % num_features == 0
|
|
|
|
| 234 |
x = super().forward(lx)
|
| 235 |
return x.view(*x.shape[:-2], -1)
|
| 236 |
|
| 237 |
+
|
| 238 |
def get_Canonical(num_classes):
|
| 239 |
return lambda num_features, emsize: CanEmb(num_features, num_classes, emsize)
|
| 240 |
|
| 241 |
+
|
| 242 |
def get_Embedding(num_embs_per_feature=100):
|
| 243 |
return lambda num_features, emsize: EmbeddingEncoder(num_features, emsize, num_embs=num_embs_per_feature)
|