File size: 6,257 Bytes
145530a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import logging
import time

import gradio as gr
from transformers import AutoTokenizer
import tiktoken

logger = logging.getLogger(__name__)  # noqa

def load_test_phrases(filename):
    with open(f"./data/{filename}", "r", encoding="utf-8") as file:
        texts = file.read().splitlines()
    return texts

# Initialize clients
models = [
          "meta-llama/Llama-2-7b-chat-hf",           # LLAMA-2
          "beomi/llama-2-ko-7b",                     # LLAMA-2-ko
          "openaccess-ai-collective/tiny-mistral",   # Mistral
          "gpt-3.5-turbo",                           # GPT3.5
          "meta-llama/Meta-Llama-3-8B-Instruct",     # LLAMA-3
          "CohereForAI/aya-23-8B",                   # AYA
          "google/gemma-1.1-2b-it",                  # GEMMA       //# requires log in to HF huggingface-cli
          "gpt-4o",                                  # GPT4o
          "TWO/sutra-alpha",                         # SUTRA
         ]

test_phrase_set = [
    "நாங்கள் சந்திரனுக்கு ராக்கெட் பயணத்தில் இருக்கிறோம்",

    "중성자 산란을 다섯 문장으로 설명해주세요",  # Korean,

    "मुझे पाँच वाक्यों में न्यूट्रॉन प्रकीर्णन की व्याख्या दीजिए",  # Hindi
    "mujhe paanch vaakyon mein nyootron prakeernan kee vyaakhya deejie",

    "আমাকে পাঁচটি বাক্যে নিউট্রন বিচ্ছুরণের একটি ব্যাখ্যা দিন",  # Bengali/Bangla
    "Amake pamcati bakye ni'utrana bicchuranera ekati byakhya dina",

    "મને પાંચ વાક્યોમાં ન્યુટ્રોન સ્કેટરિંગની સમજૂતી આપો",  # Gujarati
    "Mane panca vakyomam n'yutrona sketaringani samajuti apo",

    "நியூட்ரான் சிதறல் பற்றிய விளக்கத்தை ஐந்து வாக்கியங்களில் கொடுங்கள்",  # Tamil
    "Niyutran citaral parriya vilakkattai aintu vakkiyankalil kotunkal",

    "मला पाच वाक्यात न्यूट्रॉन स्कॅटरिंगचे स्पष्टीकरण द्या",  # Marathi

    "ఐదు వాక్యాలలో న్యూట్రాన్ స్కాటరింగ్ గురించి నాకు వివరణ ఇవ్వండి",  # Telugu
]

test_phrase_set_long_1 = load_test_phrases('multilingualphrases01.txt')
test_phrase_set_long_2 = load_test_phrases('multilingualphrases02.txt')

def generate_tokens_as_table(text):
    table = []
    for model in models:
        if 'gpt' not in model:
            tokenizer = AutoTokenizer.from_pretrained(model)
            tokens = tokenizer.encode(text, add_special_tokens=False)
        else:
            tokenizer = tiktoken.encoding_for_model(model)
            tokens = tokenizer.encode(text)
        decoded = [tokenizer.decode([t]) for t in tokens]
        table.append([model] + decoded)
    return table

def generate_tokenizer_table(input_text):
    token_counts = {model: 0 for model in models}
    vocab_size = {model: 0 for model in models}

    for model in models:
        if 'gpt' not in model:
            tokenizer = AutoTokenizer.from_pretrained(model)
            vocab_size[model] = tokenizer.vocab_size
        else:
            tokenizer = tiktoken.encoding_for_model(model)
            vocab_size[model] = tokenizer.n_vocab

        token_counts[model] += len(tokenizer.encode(input_text))

    word_count = len(input_text.split(' '))

    output = []
    for m in models:
        row = [m, vocab_size[m], word_count, token_counts[m], token_counts[m]/word_count]
        output.append(row)

    return output

def generate_split_token_table(text):
    table = generate_tokenizer_table(text)
    records = gr.Dataframe(
            table,
            headers=['tokenizer', 'v size', '#word', '#token', '#tokens/word'],
            datatype=["str", "number", "str"],
            row_count=len(models),
            col_count=(5, "fixed"),
        )

    return records

with gr.Blocks() as sutra_token_count:
    gr.Markdown(
    """
    # SUTRA Multilingual Tokenizer Specs & Stats.
    ## Tokenize paragraphs in multiple languages and inspect how many tokens it takes to represent the multilingual paragraph.
    """)
    textbox = gr.Textbox(label="Input Text")
    submit_button = gr.Button("Submit")
    output = gr.Dataframe()
    examples = [
        [' '.join(test_phrase_set_long_1)],
        [' '.join(test_phrase_set_long_2)],
    ]
    gr.Examples(examples=examples, inputs=[textbox])
    submit_button.click(generate_split_token_table, inputs=[textbox], outputs=[output])

def generate_tokens_table(text):
    table = generate_tokens_as_table(text)
    cols = len(table[0])
    records = gr.Dataframe(
            table,
            headers=['model'] + [str(i) for i in range(cols - 1)],
            row_count=2,
            col_count=(cols, "fixed"),
        )

    return records

with gr.Blocks() as sutra_tokenize:
    gr.Markdown(
    """
    # SUTRA Multilingual Tokenizer Sentence Inspector.
    ## Tokenize a sentence with various tokenizers and inspect how it's broken down.
    """)
    textbox = gr.Textbox(label="Input Text")
    submit_button = gr.Button("Submit")
    output = gr.Dataframe()
    examples = test_phrase_set
    gr.Examples(examples=examples, inputs=[textbox])
    submit_button.click(generate_tokens_table, inputs=[textbox], outputs=[output])


if __name__ == '__main__':
    with gr.Blocks(analytics_enabled=False) as demo:
        with gr.Row():
            gr.Markdown(
                """
                ## <img src="https://playground.two.ai/sutra.svg" height="20"/>
                """
            )
        with gr.Row():
            gr.TabbedInterface(
                interface_list=[sutra_tokenize, sutra_token_count],
                tab_names=["Tokenize Text", "Tokenize Paragraphs"]
            )

demo.queue(default_concurrency_limit=5).launch(
    server_name="0.0.0.0",
    allowed_paths=["/"],
)