Spaces:
Sleeping
Sleeping
import sys | |
import os | |
from datetime import datetime | |
import json | |
import uuid | |
from pathlib import Path | |
from huggingface_hub import CommitScheduler | |
import gradio as gr | |
import markdown | |
from together import Together | |
ROOT_FILE = os.path.join(os.path.dirname(os.path.abspath(__file__)), "./") | |
sys.path.append(ROOT_FILE) | |
from components.induce_personality import construct_big_five_words | |
from components.chat_conversation import ( | |
# format_message_history, | |
format_user_message, | |
format_context, | |
gradio_to_huggingface_message, | |
huggingface_to_gradio_message, | |
# get_system_instruction, | |
prepare_tokenizer, | |
# format_rag_context, | |
conversation_window, | |
generate_response_local_api, | |
generate_response_together_api, | |
generate_response_debugging, | |
) | |
from components.constant import ( | |
CONV_WINDOW, | |
API_URL, | |
) | |
from components.induce_personality import ( | |
build_personality_prompt, | |
) | |
LOG_DIR = os.path.join(ROOT_FILE, "log/api/") | |
if os.path.exists(LOG_DIR) is False: | |
os.makedirs(LOG_DIR) | |
# Load Static Files | |
STATIC_FILE = os.path.join(ROOT_FILE, "_static") | |
LOG_DIR = os.path.join(ROOT_FILE, "log/test_session/") | |
INSTRUCTION_PAGE_FILE = os.path.join(STATIC_FILE, "html/instruction_page.html") | |
USER_NARRATIVE_FILE = os.path.join(STATIC_FILE, "html/user_narrative.html") | |
PREFERENCE_ELICITATION_TASK_FILE = os.path.join(STATIC_FILE, "html/system_instruction_preference_elicitation.html") | |
EVALUATION_INSTRUCTION_FILE = os.path.join(STATIC_FILE, "html/evaluation_instruction.html") | |
GENERAL_INSTRUCTION_FILE = os.path.join(STATIC_FILE, "html/general_instruction.html") | |
FINAL_EVALUATION_FILE = os.path.join(STATIC_FILE, "html/final_evaluation.html") | |
SYSTEM_INSTRUCTION_FILE = os.path.join(STATIC_FILE, "txt/system_instruction_with_user_persona.txt") | |
SYSTEM_INSTRUECTION_PREFERENCE_ELICITATION_FILE = os.path.join( | |
STATIC_FILE, "txt/system_instruction_preference_elicitation.txt" | |
) | |
SUMMARIZATION_PROMPT_FILE = os.path.join(STATIC_FILE, "txt/system_summarization_user_preference_elicitation.txt") | |
uuid_this_session = str(uuid.uuid4()) | |
feedback_file_interaction = Path("user_feedback/") / f"data_{uuid_this_session}.json" | |
feedback_file_evaluation_and_summarization = ( | |
Path("user_feedback/") / f"evaluation_and_summarization_{uuid_this_session}.json" | |
) | |
feedback_folder = feedback_file_interaction.parent | |
feedback_folder.mkdir(parents=True, exist_ok=True) # Ensure the directory exists | |
scheduler = CommitScheduler( | |
repo_id="logging_test_space", | |
repo_type="dataset", | |
folder_path=feedback_folder, | |
path_in_repo="data", | |
token=os.getenv("HUGGINGFACE_HUB_TOKEN"), | |
every=1, | |
) | |
# Function to save user feedback | |
def save_feedback(user_id: str, uuid: str, type: str, value, feedback_file) -> None: | |
""" | |
Append input/outputs and user feedback to a JSON Lines file using a thread lock to avoid concurrent writes from different users. | |
""" | |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
with scheduler.lock: | |
with feedback_file.open("a") as f: | |
f.write( | |
json.dumps({"user_id": user_id, "uuid": uuid, "timestamp": timestamp, "type": type, "value": value}) | |
) | |
f.write("\n") | |
# Load the required static content from files | |
def load_static_content(file_path): | |
with open(file_path, "r") as f: | |
return f.read() | |
def ensure_directory_exists(directory_path): | |
"""Ensures the given directory exists; creates it if it does not.""" | |
if not os.path.exists(directory_path): | |
os.makedirs(directory_path) | |
INSTRUCTION_PAGE = load_static_content(INSTRUCTION_PAGE_FILE) | |
EVALUATION_INSTRUCTION = load_static_content(EVALUATION_INSTRUCTION_FILE) | |
GENERAL_INSTRUCTION = load_static_content(GENERAL_INSTRUCTION_FILE) | |
USER_NARRATIVE = load_static_content(USER_NARRATIVE_FILE) | |
PREFERENCE_ELICITATION_TASK = load_static_content(PREFERENCE_ELICITATION_TASK_FILE) | |
FINAL_EVALUATION = load_static_content(FINAL_EVALUATION_FILE) | |
SYSTEM_INSTRUCTION = load_static_content(SYSTEM_INSTRUCTION_FILE) | |
SYSTEM_INSTRUECTION_PREFERENCE_ELICITATION = load_static_content(SYSTEM_INSTRUECTION_PREFERENCE_ELICITATION_FILE) | |
SUMMARIZATION_PROMPT = load_static_content(SUMMARIZATION_PROMPT_FILE) | |
# Other constants | |
FIRST_MESSAGE = "Hey" | |
INFORMATION_SEEKING = True | |
USER_PREFERENCE_SUMMARY = True | |
DEBUG = False | |
API_TYPE = "debug" | |
assert API_TYPE in ["together", "local", "debug"], "The API should be either 'together' or 'local'" | |
if API_TYPE == "together": | |
TOGETHER_CLIENT = Together(api_key=os.getenv("TOGETHER_API_KEY")) | |
SESSION_DEBUG = True | |
def get_context_list(synthetic_data_path): | |
# Load data from the synthetic data file | |
with open(synthetic_data_path, "r") as f: | |
data = [json.loads(line) for line in f] | |
return data | |
def add_ticker_prefix(ticker_list, context_list): | |
res = [] | |
for ticker, context in zip(ticker_list, context_list): | |
res.append(f"{ticker}: {context}") | |
return res | |
def build_raw_context_list(context_dict): | |
return context_dict["data"] | |
def build_context(context_dict): | |
return [build_context_element(context) for context in context_dict["data"]] | |
def build_context_element(context): | |
# [{topic: ex, data: {}}, {..}, ..] | |
# Extract information from the context | |
ticker = context["ticker"] | |
sector = context["sector"] | |
business_summary = context["business_summary"] | |
name = context["short_name"] | |
stock_price = context["price_data"] | |
earning = context["earning_summary"] | |
beta = context["beta"] | |
# Build the context string | |
stock_candidate = f"Stock Candidate: {name}" | |
stock_info = f"Stock Information: \nIndustry - {sector}, \nBeta (risk indicator) - {beta}, \nEarning Summary - {earning}\n, 2023 Monthly Stock Price - {stock_price}\n, Business Summary - {business_summary}" | |
context_list = [stock_candidate, stock_info] | |
# Combine all parts into a single string | |
return "\n".join(context_list) | |
def get_user_narrative_html(user_narrative): | |
return USER_NARRATIVE.replace("{user_narrative}", user_narrative).replace("\n", "<br>") | |
def get_user_narrative_from_raw(raw_narrative): | |
return get_user_narrative_html(markdown.markdown(raw_narrative.replace("\n", "<br>"))) | |
def get_task_instruction_for_user(context): | |
ticker_name = context["short_name"] | |
user_narrative = context["user_narrative"] | |
user_narrative = user_narrative.replace("\n", "<br>") | |
html_user_narrative = markdown.markdown(user_narrative) | |
general_instruction = GENERAL_INSTRUCTION | |
round_instruction = f""" | |
<div style="background-color: #f9f9f9; padding: 20px; border-radius: 10px; box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); margin-bottom: 20px; max-height: 780px; overflow-y: auto; overflow-x: hidden;"> | |
<!-- Stock Information (Bold label, Normal ticker name) --> | |
<h2 style="color: #2c3e50; text-align: center; margin-bottom: 20px; font-size: 20px; font-weight: 600;"> | |
Round Info | |
</h2> | |
<div style="text-align: left; font-size: 20px; font-weight: bold; margin-bottom: 20px;"> | |
Stock | |
</div> | |
<div style="text-align: left; font-weight: normal; font-size: 16px; margin-bottom: 20px;"> | |
<span style="font-weight: bold;"> | |
This Round's Stock: | |
</span> | |
{ticker_name} | |
</div> | |
<!-- User Narrative (Bold label, Normal narrative) --> | |
<div style="text-align: left; font-size: 20px; font-weight: bold; margin-bottom: 20px;"> | |
User Narrative | |
</div> | |
<div style="text-align: left; font-weight: normal; font-size: 16px; margin-bottom: 20px;"> | |
{html_user_narrative} | |
</div> | |
</div>""" | |
return general_instruction, round_instruction | |
def display_system_instruction_with_html( | |
system_instruction, | |
): | |
html_system_instruction = f""" | |
<p style="text-align: left; margin-bottom: 10px;"> | |
{system_instruction} | |
</p> | |
""" | |
return html_system_instruction | |
def log_action(user_id, tab_name, action, details): | |
""" | |
Log actions for each tab (stock). | |
""" | |
log_file_dir = os.path.join(LOG_DIR, f"{user_id}") | |
if os.path.exists(log_file_dir) is False: | |
os.makedirs(log_file_dir) | |
log_file = os.path.join(log_file_dir, f"{tab_name}.txt") | |
print(log_file) | |
with open(log_file, "a") as f: | |
f.write(f"Action: {action} | Details: {details}\n") | |
def add_user_profile_to_system_instruction( | |
user_id, system_instruction, user_preference_elicitation_data, summary, terminator | |
): | |
if summary: | |
if user_preference_elicitation_data["summary_history"] == "": | |
# Format prompt | |
summarization_prompt = SUMMARIZATION_PROMPT + "\nPrevious Conversations: {}".format( | |
user_preference_elicitation_data["history"] | |
) | |
summarization_instruction = [{"role": "system", "content": summarization_prompt}] | |
if API_TYPE == "local": | |
summ, _ = generate_response_local_api(summarization_instruction, terminator, 512, API_URL) | |
elif API_TYPE == "together": | |
summ, _ = generate_response_together_api(summarization_instruction, 512, TOGETHER_CLIENT) | |
else: | |
summ, _ = generate_response_debugging(summarization_instruction) | |
user_preference_elicitation_data["summary_history"] = summ | |
# log_action(user_id, "Prompt", "Preference Elicitation Summarization", summ) | |
save_feedback( | |
user_id, | |
uuid_this_session, | |
"Preference_Elicitation_Summarization", | |
{"summarization": summ}, | |
feedback_file_evaluation_and_summarization, | |
) | |
# print(f"Preference Summary:{summ}") | |
system_instruction += f"\nPrevious Conversations with the Customer about the User Profile: {user_preference_elicitation_data['summary_history']}\n" | |
else: | |
system_instruction += f"\nPrevious Conversations with the Customer about the User Profile: {user_preference_elicitation_data['history']}\n" | |
return system_instruction | |
def create_demo(): | |
global personality_prompts, context_info_list, terminator | |
def tab_creation_exploration_stage(order, comp, context): | |
english_order = ["1", "2", "3", "4", "5"] | |
with gr.Tab(f"{english_order[order]}-1:Discuss"): | |
general_instruction = gr.HTML(label="General Instruction") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
round_instruction = gr.HTML(label="Round Instruction") | |
with gr.Column(): | |
with gr.Row(): | |
chatbot = gr.Chatbot(height=600) | |
with gr.Row(): | |
start_conversation = gr.Button(value="Start Conversation") | |
with gr.Row(): | |
msg = gr.Textbox(scale=1, label="User Input") | |
with gr.Row(): | |
msg_button = gr.Button(value="Send This Message to Advisor", interactive=False) | |
continue_button = gr.Button(value="Show More of the Advisor’s Answer", interactive=False) | |
with gr.Row(): | |
clear = gr.ClearButton([msg, chatbot]) | |
with gr.Tab(f"{english_order[order]}-2:Eval"): | |
with gr.Row(): | |
gr.HTML(value=EVALUATION_INSTRUCTION) | |
with gr.Row(): | |
dropdown = gr.Dropdown( | |
label="Would you like to purchase the stock?", | |
choices=["Yes", "No"], | |
show_label=True, | |
) | |
reason = gr.Textbox( | |
scale=1, | |
label="Reason for Your Choice (Explain Your Reasoning & Highlight Useful Parts of Conversation)", | |
lines=5, | |
) | |
with gr.Row(): | |
trust = gr.Slider( | |
label="Trust", | |
minimum=1, | |
maximum=100, | |
value=50, | |
info="How much do you trust the financial advisor? Answer from 1 to 100. A score of 100 means you have complete trust in the financial advisor, while a score of 1 means you have no trust at all.", | |
step=1, | |
) | |
satisfaction = gr.Slider( | |
label="Satisfaction", | |
minimum=1, | |
maximum=100, | |
value=50, | |
info="How satisfied are you with the financial advisor? Answer from 1 to 100. A score of 100 means you are completely satisfied, while a score of 1 means you are not satisfied at all.", | |
step=1, | |
) | |
with gr.Row(): | |
knowledgeable = gr.Slider( | |
label="Knowledgeable", | |
minimum=1, | |
maximum=100, | |
value=50, | |
info="How knowledgeable do you feel after interacting with the financial advisor? Answer from 1 to 100. A score of 100 means you feel very knowledgeable, while a score of 1 means you feel not knowledgeable at all.", | |
step=1, | |
) | |
helpful = gr.Slider( | |
label="Helpful", | |
minimum=1, | |
maximum=100, | |
value=50, | |
info="How helpful do you find the financial advisor? Answer from 1 to 100. A score of 100 means you find the financial advisor very helpful, while a score of 1 means you find the financial advisor not helpful at all.", | |
step=1, | |
) | |
evaluation_send_button = gr.Button(value="Send: Evaluation") | |
return { | |
"comp": comp, | |
"system_instruction_context": context, | |
"start_conversation": start_conversation, | |
"msg_button": msg_button, | |
"continue_button": continue_button, | |
"chatbot": chatbot, | |
"msg": msg, | |
"dropdown": dropdown, | |
"reason": reason, | |
"trust": trust, | |
"satisfaction": satisfaction, | |
"knowledgeable": knowledgeable, | |
"helpful": helpful, | |
"evaluation_send_button": evaluation_send_button, | |
"general_instruction": general_instruction, | |
"round_instruction": round_instruction, | |
} | |
def tab_creation_preference_stage(): | |
with gr.Row(): | |
gr.HTML(value=PREFERENCE_ELICITATION_TASK, label="Preference Elicitation Task") | |
with gr.Row(): | |
with gr.Column(): | |
user_narrative = gr.HTML(label="User Narrative") | |
with gr.Column(): | |
with gr.Row(): | |
elicitation_chatbot = gr.Chatbot(height=600) | |
with gr.Row(): | |
start_conversation = gr.Button(value="Start Conversation") | |
with gr.Row(): | |
msg = gr.Textbox(scale=1, label="User Input") | |
with gr.Row(): | |
msg_button = gr.Button(value="Send This Message to Advisor", interactive=False) | |
continue_button = gr.Button(value="Show More of the Advisor’s Answer", interactive=False) | |
return { | |
"start_conversation": start_conversation, | |
"msg_button": msg_button, | |
"continue_button": continue_button, | |
"msg": msg, | |
"elicitation_chatbot": elicitation_chatbot, | |
"user_narrative": user_narrative, | |
} | |
def tab_final_evaluation(): | |
with gr.Row(): | |
gr.HTML(value=FINAL_EVALUATION) | |
with gr.Row(): | |
ranking_first_comp = gr.Dropdown(choices=[1, 2, 3, 4, 5]) | |
ranking_second_comp = gr.Dropdown(choices=[1, 2, 3, 4, 5]) | |
ranking_third_comp = gr.Dropdown(choices=[1, 2, 3, 4, 5]) | |
ranking_fourth_comp = gr.Dropdown(choices=[1, 2, 3, 4, 5]) | |
ranking_fifth_comp = gr.Dropdown(choices=[1, 2, 3, 4, 5]) | |
with gr.Row(): | |
textbox = gr.HTML( | |
"""<div style="background-color: #f8d7da; color: #721c24; padding: 15px; border: 1px solid #f5c6cb; border-radius: 5px; margin-bottom: 20px;"> | |
<strong>Please rank the stocks from 1 to 5, where 1 is the most preferred and 5 is the least preferred.</strong> | |
<br> | |
<strong>Make sure to assign different scores to different stocks.</strong> | |
</div>""" | |
) | |
submit_ranking = gr.Button(value="Submit Ranking") | |
return { | |
"first": ranking_first_comp, | |
"second": ranking_second_comp, | |
"third": ranking_third_comp, | |
"fourth": ranking_fourth_comp, | |
"fifth": ranking_fifth_comp, | |
"submit_ranking": submit_ranking, | |
"text_box": textbox, | |
} | |
def click_control_exploration_stage( | |
tabs, user_id, tab_session, user_preference_elicitation_session, system_description_without_context | |
): | |
( | |
comp, | |
system_instruction_context, | |
start_conversation, | |
msg_button, | |
continue_button, | |
chatbot, | |
msg, | |
dropdown, | |
reason, | |
trust, | |
satisfaction, | |
knowledgeable, | |
helpful, | |
evaluation_send_button, | |
) = ( | |
tabs["comp"], | |
tabs["system_instruction_context"], | |
tabs["start_conversation"], | |
tabs["msg_button"], | |
tabs["continue_button"], | |
tabs["chatbot"], | |
tabs["msg"], | |
tabs["dropdown"], | |
tabs["reason"], | |
tabs["trust"], | |
tabs["satisfaction"], | |
tabs["knowledgeable"], | |
tabs["helpful"], | |
tabs["evaluation_send_button"], | |
) | |
system_instruction = "" | |
start_conversation.click( | |
lambda user_id, tab_session, history, comp, user_preference_elicitation_session, system_description_without_context, system_instruction_context: respond_start_conversation( | |
user_id, | |
tab_session, | |
history, | |
system_instruction, | |
comp, | |
user_preference_elicitation_data=user_preference_elicitation_session, | |
system_description_without_context=system_description_without_context, | |
system_instruction_context=system_instruction_context, | |
), | |
[ | |
user_id, | |
tab_session, | |
chatbot, | |
comp, | |
user_preference_elicitation_session, | |
system_description_without_context, | |
system_instruction_context, | |
], | |
[tab_session, chatbot, start_conversation, msg_button, continue_button], | |
) | |
msg_button.click( | |
lambda user_id, tab_session, message, history, comp, user_preference_elicitation_session, system_description_without_context, system_instruction_context: respond( | |
user_id, | |
tab_session, | |
message, | |
tab_session["history"], | |
system_instruction, | |
comp, | |
user_preference_elicitation_data=user_preference_elicitation_session, | |
system_description_without_context=system_description_without_context, | |
system_instruction_context=system_instruction_context, | |
), | |
[ | |
user_id, | |
tab_session, | |
msg, | |
chatbot, | |
comp, | |
user_preference_elicitation_session, | |
system_description_without_context, | |
system_instruction_context, | |
], | |
[tab_session, msg, chatbot], | |
) | |
continue_button.click( | |
lambda user_id, tab_session, history, comp, user_preference_elicitation_session, system_description_without_context, system_instruction_context: respond_continue( | |
user_id, | |
tab_session, | |
tab_session["history"], | |
system_instruction, | |
comp, | |
user_preference_elicitation_data=user_preference_elicitation_session, | |
system_description_without_context=system_description_without_context, | |
system_instruction_context=system_instruction_context, | |
), | |
[ | |
user_id, | |
tab_session, | |
chatbot, | |
comp, | |
user_preference_elicitation_session, | |
system_description_without_context, | |
system_instruction_context, | |
], | |
[tab_session, chatbot], | |
) | |
evaluation_send_button.click( | |
lambda user_id, comp, tab_session, dropdown, reason, trust, satisfaction, knowledgeable, helpful: respond_evaluation( | |
user_id, | |
tab_session, | |
{ | |
"selection": dropdown, | |
"reason": reason, | |
"trust": trust, | |
"satisfaction": satisfaction, | |
"knowledgeable": knowledgeable, | |
"helpful": helpful, | |
}, | |
comp, | |
), | |
[user_id, comp, tab_session, dropdown, reason, trust, satisfaction, knowledgeable, helpful], | |
[tab_session, dropdown, reason, trust, satisfaction, knowledgeable, helpful], | |
) | |
def click_control_preference_stage(tabs, user_id, user_preference_elicitation_session): | |
( | |
start_conversation, | |
msg_button, | |
continue_button, | |
elicitation_chatbot, | |
msg, | |
) = ( | |
tabs["start_conversation"], | |
tabs["msg_button"], | |
tabs["continue_button"], | |
tabs["elicitation_chatbot"], | |
tabs["msg"], | |
) | |
# nonlocal user_id | |
start_conversation.click( | |
lambda user_id, user_preference_elicitation_data, history: respond_start_conversation( | |
user_id, | |
user_preference_elicitation_data, | |
history, | |
SYSTEM_INSTRUECTION_PREFERENCE_ELICITATION, | |
user_elicitation=True, | |
), | |
[user_id, user_preference_elicitation_session, elicitation_chatbot], | |
[user_preference_elicitation_session, elicitation_chatbot, start_conversation, msg_button, continue_button], | |
) | |
msg_button.click( | |
lambda user_id, tab_data, message, history: respond( | |
user_id, | |
tab_data, | |
message, | |
tab_data["history"], | |
SYSTEM_INSTRUECTION_PREFERENCE_ELICITATION, | |
user_elicitation=True, | |
), | |
[user_id, user_preference_elicitation_session, msg, elicitation_chatbot], | |
[user_preference_elicitation_session, msg, elicitation_chatbot], | |
) | |
continue_button.click( | |
lambda user_id, tab_data, history: respond_continue( | |
user_id, | |
tab_data, | |
tab_data["history"], | |
SYSTEM_INSTRUECTION_PREFERENCE_ELICITATION, | |
user_elicitation=True, | |
), | |
[user_id, user_preference_elicitation_session, elicitation_chatbot], | |
[user_preference_elicitation_session, elicitation_chatbot], | |
) | |
def click_control_final_evaluation(tabs, user_id, first_comp, second_comp, third_comp, fourth_comp, fifth_comp): | |
ranking_first_comp, ranking_second_comp, ranking_third_comp, ranking_fourth_comp, ranking_fifth_comp = ( | |
tabs["first"], | |
tabs["second"], | |
tabs["third"], | |
tabs["fourth"], | |
tabs["fifth"], | |
) | |
result_textbox = tabs["text_box"] | |
submit_ranking = tabs["submit_ranking"] | |
submit_ranking.click( | |
lambda user_id, ranking_first_comp, first_comp, ranking_second_comp, second_comp, ranking_third_comp, third_comp, ranking_fourth_comp, fourth_comp, ranking_fifth_comp, fifth_comp: respond_final_ranking( | |
user_id, | |
first_comp, | |
ranking_first_comp, | |
second_comp, | |
ranking_second_comp, | |
third_comp, | |
ranking_third_comp, | |
fourth_comp, | |
ranking_fourth_comp, | |
fifth_comp, | |
ranking_fifth_comp, | |
), | |
# Input components (names and rankings) | |
[ | |
user_id, | |
ranking_first_comp, | |
first_comp, | |
ranking_second_comp, | |
second_comp, | |
ranking_third_comp, | |
third_comp, | |
ranking_fourth_comp, | |
fourth_comp, | |
ranking_fifth_comp, | |
fifth_comp, | |
], | |
# Output component(s) where you want the result to appear, e.g., result_textbox | |
[result_textbox], | |
) | |
def respond( | |
user_id, | |
tab_data, | |
message, | |
history, | |
system_instruction, | |
tab_name=None, | |
user_elicitation=False, | |
user_preference_elicitation_data=None, | |
system_description_without_context=None, | |
system_instruction_context=None, | |
): | |
""" | |
Return: | |
msg | |
chat_history | |
retrieved_passage | |
rewritten_query | |
""" | |
assert ( | |
tab_name is not None or user_elicitation is True | |
), "Tab name is required for the start of the conversation unless it is not preference elicitation." | |
# Add user profile to system instruction | |
if system_description_without_context is not None and system_instruction_context is not None: | |
system_instruction = system_description_without_context + "\n" + system_instruction_context | |
if not user_elicitation: | |
system_instruction = add_user_profile_to_system_instruction( | |
user_id, | |
system_instruction, | |
user_preference_elicitation_data, | |
summary=USER_PREFERENCE_SUMMARY, | |
terminator=terminator, | |
) | |
# Formatting Input | |
print(f"User Message: {message} in Tab: {tab_name}") | |
# From string to list [{"role":"user", "content": message}, ...] | |
history = gradio_to_huggingface_message(history) | |
# We can implement context window here as we need all the system interaction. We can cut some of the early interactions if needed. | |
history = conversation_window(history, CONV_WINDOW) | |
# Add system instruction to the history | |
history = format_context(system_instruction, history) | |
# Add user message to the history | |
history_with_user_utterance = format_user_message(message, history) | |
# Call API instead of locally handle it | |
if API_TYPE == "local": | |
outputs_text, history = generate_response_local_api(history_with_user_utterance, terminator, 128, API_URL) | |
elif API_TYPE == "together": | |
outputs_text, history = generate_response_together_api(history_with_user_utterance, 128, TOGETHER_CLIENT) | |
else: | |
outputs_text, history = generate_response_debugging(history_with_user_utterance) | |
# exclude system interaction and store the others in the history | |
history = huggingface_to_gradio_message(history) | |
if tab_name is not None: | |
print(f"Tab: {tab_name}\nSystem Output: {outputs_text}") | |
# Log the user message and response | |
save_feedback( | |
user_id, | |
uuid_this_session, | |
"Interaction", | |
{"type": tab_name, "role": "user", "content": message}, | |
feedback_file_interaction, | |
) | |
save_feedback( | |
user_id, | |
uuid_this_session, | |
"Interaction", | |
{"type": tab_name, "role": "assistant", "content": outputs_text}, | |
feedback_file_interaction, | |
) | |
# log_action(user_id, tab_name, "User Message", message) | |
# log_action(user_id, tab_name, "Response", outputs_text) | |
# Store the updated history for this tab | |
tab_data["history"] = history | |
if user_elicitation: | |
print(f"User Elicitation\nSystem Output: {outputs_text}") | |
save_feedback( | |
user_id, | |
uuid_this_session, | |
"Interaction", | |
{"type": "User_Elicitation", "role": "user", "content": message}, | |
feedback_file_interaction, | |
) | |
save_feedback( | |
user_id, | |
uuid_this_session, | |
"Interaction", | |
{"type": "User_Elicitation", "role": "assistant", "content": outputs_text}, | |
feedback_file_interaction, | |
) | |
# log_action(user_id, "User_Elicitation", "User Message", message) | |
# log_action(user_id, "User_Elicitation", "Response", outputs_text) | |
tab_data["history"] = history | |
# if SESSION_DEBUG: | |
# log_action(user_id, "Session", "History", history) | |
return tab_data, "", history | |
def respond_start_conversation( | |
user_id, | |
tab_data, | |
history, | |
system_instruction, | |
tab_name=None, | |
user_elicitation=False, | |
user_preference_elicitation_data=None, | |
system_description_without_context=None, | |
system_instruction_context=None, | |
): | |
assert ( | |
tab_name is not None or user_elicitation is True | |
), "Tab name is required for the start of the conversation unless it is not preference elicitation." | |
if system_description_without_context is not None and system_instruction_context is not None: | |
system_instruction = system_description_without_context + "\n" + system_instruction_context | |
if not user_elicitation: | |
print(f"User Preference Elicitation Data: {user_preference_elicitation_data}") | |
print(f"Tab data: {tab_data}") | |
system_instruction = add_user_profile_to_system_instruction( | |
user_id, | |
system_instruction, | |
user_preference_elicitation_data, | |
summary=USER_PREFERENCE_SUMMARY, | |
terminator=terminator, | |
) | |
print(f"Tab: {tab_name}\nSystem Instruction:{system_instruction}") | |
history = gradio_to_huggingface_message(history) | |
history = format_context(system_instruction, history) | |
first_message = FIRST_MESSAGE | |
history_with_user_utterance = format_user_message(first_message, history) | |
if API_TYPE == "local": | |
outputs_text, history = generate_response_local_api(history_with_user_utterance, terminator, 128, API_URL) | |
elif API_TYPE == "together": | |
outputs_text, history = generate_response_together_api(history_with_user_utterance, 128, TOGETHER_CLIENT) | |
else: | |
outputs_text, history = generate_response_debugging(history_with_user_utterance) | |
# Format | |
history = huggingface_to_gradio_message(history) | |
if tab_name is not None: | |
print(f"Tab: {tab_name}\nHistory: {history}") | |
# Log the user message and response | |
save_feedback( | |
user_id, | |
uuid_this_session, | |
"Interaction", | |
{"type": tab_name, "role": "user", "content": first_message}, | |
feedback_file_interaction, | |
) | |
save_feedback( | |
user_id, | |
uuid_this_session, | |
"Interaction", | |
{"type": tab_name, "role": "assistant", "content": outputs_text}, | |
feedback_file_interaction, | |
) | |
# log_action(user_id, tab_name, "User Message", first_message) | |
# log_action(user_id, tab_name, "Response", outputs_text) | |
# Store the updated history for this tab | |
tab_data["history"] = history | |
if user_elicitation: | |
print(f"User Elicitation\nHistory: {history}") | |
save_feedback( | |
user_id, | |
uuid_this_session, | |
"Interaction", | |
{"type": "User_Elicitation", "role": "user", "content": first_message}, | |
feedback_file_interaction, | |
) | |
save_feedback( | |
user_id, | |
uuid_this_session, | |
"Interaction", | |
{"type": "User_Elicitation", "role": "assistant", "content": outputs_text}, | |
feedback_file_interaction, | |
) | |
# log_action(user_id, "User_Elicitation", "User Message", first_message) | |
# log_action(user_id, "User_Elicitation", "Response", outputs_text) | |
tab_data["history"] = history | |
# if SESSION_DEBUG: | |
# log_action(user_id, "Session", "History", history) | |
return ( | |
tab_data, | |
history, | |
gr.Button(value="Start Conversation", interactive=False), | |
gr.Button(value="Send This Message to Advisor", interactive=True), | |
gr.Button(value="Show More of the Advisor’s Answer", interactive=True), | |
) | |
def respond_continue( | |
user_id, | |
tab_data, | |
history, | |
system_instruction, | |
tab_name=None, | |
user_elicitation=False, | |
user_preference_elicitation_data=None, | |
system_description_without_context=None, | |
system_instruction_context=None, | |
): | |
assert ( | |
tab_name is not None or user_elicitation is True | |
), "Tab name is required for the start of the conversation." | |
# Add user profile to system instruction | |
if system_description_without_context is not None and system_instruction_context is not None: | |
system_instruction = system_description_without_context + "\n" + system_instruction_context | |
if not user_elicitation: | |
system_instruction = add_user_profile_to_system_instruction( | |
user_id, | |
system_instruction, | |
user_preference_elicitation_data, | |
summary=USER_PREFERENCE_SUMMARY, | |
terminator=terminator, | |
) | |
message = "continue" | |
history = gradio_to_huggingface_message(history) | |
history = conversation_window(history, CONV_WINDOW) | |
history = format_context(system_instruction, history) | |
history_with_user_utterance = format_user_message(message, history) | |
if API_TYPE == "local": | |
outputs_text, history = generate_response_local_api(history_with_user_utterance, terminator, 128, API_URL) | |
elif API_TYPE == "together": | |
outputs_text, history = generate_response_together_api(history_with_user_utterance, 128, TOGETHER_CLIENT) | |
else: | |
outputs_text, history = generate_response_debugging(history_with_user_utterance) | |
history = huggingface_to_gradio_message(history) | |
if tab_name is not None: | |
save_feedback( | |
user_id, | |
uuid_this_session, | |
"Interaction", | |
{ | |
"type": tab_name, | |
"role": "user", | |
"content": message, | |
}, | |
feedback_file_interaction, | |
) | |
save_feedback( | |
user_id, | |
uuid_this_session, | |
"Interaction", | |
{"type": tab_name, "role": "assistant", "content": outputs_text}, | |
feedback_file_interaction, | |
) | |
# log_action(user_id, tab_name, "Show More of the Advisor’s Answer", "User continued the conversation") | |
# log_action(user_id, tab_name, "Response", outputs_text) | |
# Update history for this tab | |
tab_data["history"] = history | |
if user_elicitation: | |
print(f"User Elicitation\nSystem Output: {outputs_text}") | |
save_feedback( | |
user_id, | |
uuid_this_session, | |
"Interaction", | |
{"type": "User_Elicitation", "role": "user", "content": message}, | |
feedback_file_interaction, | |
) | |
save_feedback( | |
user_id, | |
uuid_this_session, | |
"Interaction", | |
{"type": "User_Elicitation", "role": "assistant", "content": outputs_text}, | |
feedback_file_interaction, | |
) | |
# log_action(user_id, "User_Elicitation", "Response", outputs_text) | |
tab_data["history"] = history | |
# if SESSION_DEBUG: | |
# log_action(user_id, "Session", "History", history) | |
return tab_data, history | |
def respond_evaluation(user_id, tab_data, evals, tab_name): | |
# dropdown, readon_button, multi-evaluator | |
print(f"Tab: {tab_name}\nEvaluation: {evals}") | |
save_feedback(user_id, uuid_this_session, "Round_Evaluation", evals, feedback_file_evaluation_and_summarization) | |
# log_action(user_id, tab_name, "Round Evaluation", "Following") | |
# for key, value in evals.items(): | |
# log_action(user_id, tab_name, key, value) | |
# Store the reason for this tab | |
tab_data["multi_evaluator"] = evals | |
return ( | |
tab_data, | |
evals["selection"], | |
evals["reason"], | |
evals["trust"], | |
evals["satisfaction"], | |
evals["knowledgeable"], | |
evals["helpful"], | |
) | |
def respond_final_ranking( | |
user_id, | |
first_comp, | |
ranking_first_comp, | |
second_comp, | |
ranking_second_comp, | |
third_comp, | |
ranking_third_comp, | |
fourth_comp, | |
ranking_fourth_comp, | |
fifth_comp, | |
ranking_fifth_comp, | |
): | |
# make sure that they are not the same | |
ranking_list = [ | |
ranking_first_comp, | |
ranking_second_comp, | |
ranking_third_comp, | |
ranking_fourth_comp, | |
ranking_fifth_comp, | |
] | |
if len(set(ranking_list)) != len(ranking_list): | |
return """<div style="background-color: #fff3cd; color: #856404; padding: 15px; border: 1px solid #ffeeba; border-radius: 5px; margin-bottom: 20px;"> | |
<strong>Please make sure that you are not ranking the same stock multiple times.</strong> | |
</div>""" | |
else: | |
save_feedback( | |
user_id, | |
uuid_this_session, | |
"Final_Ranking", | |
{ | |
first_comp: ranking_first_comp, | |
second_comp: ranking_second_comp, | |
third_comp: ranking_third_comp, | |
fourth_comp: ranking_fourth_comp, | |
fifth_comp: ranking_fifth_comp, | |
}, | |
feedback_file_evaluation_and_summarization, | |
) | |
# log_action(user_id, "Final_Ranking", first_comp, ranking_first_comp) | |
# log_action(user_id, "Final_Ranking", second_comp, ranking_second_comp) | |
# log_action(user_id, "Final_Ranking", third_comp, ranking_third_comp) | |
# log_action(user_id, "Final_Ranking", fourth_comp, ranking_fourth_comp) | |
# log_action(user_id, "Final_Ranking", fifth_comp, ranking_fifth_comp) | |
return """<div style="background-color: #d4edda; color: #155724; padding: 15px; border: 1px solid #c3e6cb; border-radius: 5px; margin-bottom: 20px;"> | |
<strong>Thank you for participating in the experiment. This concludes the session. You may now close the tab.</strong> | |
</div>""" | |
def get_context(index, raw_context_list, stock_context_list): | |
comp = raw_context_list[index]["short_name"] | |
context = stock_context_list[index] | |
general_instruction, round_instruction = get_task_instruction_for_user(raw_context_list[index]) | |
return comp, context, general_instruction, round_instruction | |
def set_user_id(request: gr.Request): | |
user_id = request.username | |
narrative_id = user_id.split("_")[-2] | |
personality_id = user_id.split("_")[-1] | |
print(f"User ID: {user_id}, Narrative ID: {narrative_id}, Personality ID: {personality_id}") | |
return user_id, narrative_id, personality_id | |
def get_inst_without_context(personality_id): | |
return SYSTEM_INSTRUCTION + "\n" + personality_prompts[int(personality_id)] | |
def get_stock_related_context(narrative_id): | |
raw_context_list = build_raw_context_list(context_info_list[int(narrative_id)]) | |
stock_context_list = build_context(context_info_list[int(narrative_id)]) | |
return raw_context_list, stock_context_list | |
def set_initial_values(request: gr.Request): | |
# Set user specific information (Session State) | |
user_id, narrative_id, personality_id = set_user_id(request) | |
# System instruction without prompt | |
system_description_without_context = get_inst_without_context(personality_id) | |
# Stock related context | |
raw_context_list, stock_context_list = get_stock_related_context(narrative_id) | |
# User Narrative | |
user_narrative = get_user_narrative_from_raw(raw_context_list[0]["user_narrative"]) | |
# Tab Context | |
first_comp, first_context, first_general_instruction, first_round_instruction = get_context( | |
0, raw_context_list, stock_context_list | |
) | |
second_comp, second_context, second_general_instruction, second_round_instruction = get_context( | |
1, raw_context_list, stock_context_list | |
) | |
third_comp, third_context, third_general_instruction, third_round_instruction = get_context( | |
2, raw_context_list, stock_context_list | |
) | |
fourth_comp, fourth_context, fourth_general_instruction, fourth_round_instruction = get_context( | |
3, raw_context_list, stock_context_list | |
) | |
fifth_comp, fifth_context, fifth_general_instruction, fifth_round_instruction = get_context( | |
4, raw_context_list, stock_context_list | |
) | |
# Final Evaluation | |
ranking_first_comp = gr.Dropdown(choices=[1, 2, 3, 4, 5], label=first_comp) | |
ranking_second_comp = gr.Dropdown(choices=[1, 2, 3, 4, 5], label=second_comp) | |
ranking_third_comp = gr.Dropdown(choices=[1, 2, 3, 4, 5], label=third_comp) | |
ranking_fourth_comp = gr.Dropdown(choices=[1, 2, 3, 4, 5], label=fourth_comp) | |
ranking_fifth_comp = gr.Dropdown(choices=[1, 2, 3, 4, 5], label=fifth_comp) | |
return ( | |
user_id, | |
narrative_id, | |
personality_id, | |
system_description_without_context, | |
raw_context_list, | |
stock_context_list, | |
user_narrative, | |
first_comp, | |
first_context, | |
first_general_instruction, | |
first_round_instruction, | |
second_comp, | |
second_context, | |
second_general_instruction, | |
second_round_instruction, | |
third_comp, | |
third_context, | |
third_general_instruction, | |
third_round_instruction, | |
fourth_comp, | |
fourth_context, | |
fourth_general_instruction, | |
fourth_round_instruction, | |
fifth_comp, | |
fifth_context, | |
fifth_general_instruction, | |
fifth_round_instruction, | |
ranking_first_comp, | |
ranking_second_comp, | |
ranking_third_comp, | |
ranking_fourth_comp, | |
ranking_fifth_comp, | |
) | |
with gr.Blocks(title="RAG Chatbot Q&A", theme="Soft") as demo: | |
# Set user specific information (Session State) | |
user_id = gr.State() | |
narrative_id = gr.State() | |
personality_id = gr.State() | |
system_description_without_context = gr.State() | |
# Context data | |
raw_context_list = gr.State() | |
stock_context_list = gr.State() | |
first_comp = gr.State() | |
first_context = gr.State() | |
second_comp = gr.State() | |
second_context = gr.State() | |
third_comp = gr.State() | |
third_context = gr.State() | |
fourth_comp = gr.State() | |
fourth_context = gr.State() | |
fifth_comp = gr.State() | |
fifth_context = gr.State() | |
# Tab data | |
if DEBUG: | |
user_preference_elicitation_session = gr.State( | |
value={ | |
"history": "", | |
"summary_history": """Previous Conversations with the Customer about the User Profile: Based on our previous conversation, here's a summary of your investment preferences: | |
# 1. **Preferred Industries:** You're interested in investing in the healthcare sector, without a specific preference for sub-industries such as pharmaceuticals, medical devices, biotechnology, or healthcare services. | |
# 2. **Value vs. Growth Stocks:** You prefer growth stocks, which have the potential for high returns but may be riskier. | |
# 3. **Dividend vs. Non-Dividend Stocks:** You're open to both dividend and non-dividend growth stocks, focusing on reinvesting profits for future growth. | |
# 4. **Cyclical vs. Non-Cyclical Stocks:** You're interested in cyclical stocks, which are sensitive to economic fluctuations and tend to perform well during economic expansions.""", | |
} | |
) | |
else: | |
user_preference_elicitation_session = gr.State(value={"history": "", "summary_history": ""}) | |
first_comp_session = gr.State(value={"history": [], "selection": "", "reason": ""}) | |
second_comp_session = gr.State(value={"history": [], "selection": "", "reason": ""}) | |
third_comp_session = gr.State(value={"history": [], "selection": "", "reason": ""}) | |
fourth_comp_session = gr.State(value={"history": [], "selection": "", "reason": ""}) | |
fifth_comp_session = gr.State(value={"history": [], "selection": "", "reason": ""}) | |
# EXperiment Instruction | |
with gr.Tab("Experiment Instruction") as instruction_tab: | |
gr.HTML(value=INSTRUCTION_PAGE, label="Experiment Instruction") | |
# User Preference Elicitation Tab | |
with gr.Tab("Preference Elicitation Stage") as preference_elicitation_tab: | |
user_preference_elicitation_tab = tab_creation_preference_stage() | |
user_narrative = user_preference_elicitation_tab["user_narrative"] | |
click_control_preference_stage( | |
user_preference_elicitation_tab, user_id, user_preference_elicitation_session | |
) | |
with gr.Tab("Financial Decision Stage") as financial_decision: | |
# Experiment Tag | |
first_tab = tab_creation_exploration_stage(0, first_comp, first_context) | |
first_general_instruction, first_round_instruction = ( | |
first_tab["general_instruction"], | |
first_tab["round_instruction"], | |
) | |
click_control_exploration_stage( | |
first_tab, | |
user_id, | |
first_comp_session, | |
user_preference_elicitation_session, | |
system_description_without_context, | |
) | |
second_tab = tab_creation_exploration_stage(1, second_comp, second_context) | |
second_general_instruction, second_round_instruction = ( | |
second_tab["general_instruction"], | |
second_tab["round_instruction"], | |
) | |
click_control_exploration_stage( | |
second_tab, | |
user_id, | |
second_comp_session, | |
user_preference_elicitation_session, | |
system_description_without_context, | |
) | |
third_tab = tab_creation_exploration_stage(2, third_comp, third_context) | |
third_general_instruction, third_round_instruction = ( | |
third_tab["general_instruction"], | |
third_tab["round_instruction"], | |
) | |
click_control_exploration_stage( | |
third_tab, | |
user_id, | |
third_comp_session, | |
user_preference_elicitation_session, | |
system_description_without_context, | |
) | |
fourth_tab = tab_creation_exploration_stage(3, fourth_comp, fourth_context) | |
fourth_general_instruction, fourth_round_instruction = ( | |
fourth_tab["general_instruction"], | |
fourth_tab["round_instruction"], | |
) | |
click_control_exploration_stage( | |
fourth_tab, | |
user_id, | |
fourth_comp_session, | |
user_preference_elicitation_session, | |
system_description_without_context, | |
) | |
fifth_tab = tab_creation_exploration_stage(4, fifth_comp, fifth_context) | |
fifth_general_instruction, fifth_round_instruction = ( | |
fifth_tab["general_instruction"], | |
fifth_tab["round_instruction"], | |
) | |
click_control_exploration_stage( | |
fifth_tab, | |
user_id, | |
fifth_comp_session, | |
user_preference_elicitation_session, | |
system_description_without_context, | |
) | |
with gr.Tab("Final Evaluation Stage") as final_evaluation: | |
final_evaluation_tab = tab_final_evaluation() | |
ranking_first_comp, ranking_second_comp, ranking_third_comp, ranking_fourth_comp, ranking_fifth_comp = ( | |
final_evaluation_tab["first"], | |
final_evaluation_tab["second"], | |
final_evaluation_tab["third"], | |
final_evaluation_tab["fourth"], | |
final_evaluation_tab["fifth"], | |
) | |
click_control_final_evaluation( | |
final_evaluation_tab, user_id, first_comp, second_comp, third_comp, fourth_comp, fifth_comp | |
) | |
demo.load( | |
set_initial_values, | |
inputs=None, | |
outputs=[ | |
user_id, | |
narrative_id, | |
personality_id, | |
system_description_without_context, | |
raw_context_list, | |
stock_context_list, | |
user_narrative, | |
first_comp, | |
first_context, | |
first_general_instruction, | |
first_round_instruction, | |
second_comp, | |
second_context, | |
second_general_instruction, | |
second_round_instruction, | |
third_comp, | |
third_context, | |
third_general_instruction, | |
third_round_instruction, | |
fourth_comp, | |
fourth_context, | |
fourth_general_instruction, | |
fourth_round_instruction, | |
fifth_comp, | |
fifth_context, | |
fifth_general_instruction, | |
fifth_round_instruction, | |
ranking_first_comp, | |
ranking_second_comp, | |
ranking_third_comp, | |
ranking_fourth_comp, | |
ranking_fifth_comp, | |
], | |
) | |
return demo | |
if __name__ == "__main__": | |
file_path = os.path.join(ROOT_FILE, "./data/single_stock_data/single_stock_demo.jsonl") | |
topics = [ | |
"healthcare_growth_1", | |
"healthcare_growth_2", | |
"cola_1", | |
"cola_2", | |
"esg_1", | |
"esg_2", | |
"pg_1", | |
"pg_2", | |
"jpm_1", | |
"jpm_2", | |
] | |
context_info_list = get_context_list(file_path) # str to List of Dict | |
# system instruction consist of Task, Personality, and Context | |
""" | |
Personality | |
["extroverted", "introverted"] | |
["agreeable", "antagonistic"] | |
["conscientious", "unconscientious"] | |
["neurotic", "emotionally stable"] | |
["open to experience", "closed to experience"]] | |
""" | |
# Global variables | |
personality = { | |
1: [ | |
"extroverted", | |
"agreeable", | |
"conscientious", | |
"emotionally stable", | |
"open to experience", | |
] | |
} | |
personality_prompts = {i: build_personality_prompt(p) for i, p in personality.items()} | |
terminator = ["<eos>", "<unk>", "<sep>", "<pad>", "<cls>", "<mask>"] | |
demo = create_demo() | |
demo.launch(share=True, auth=[("user_1_1", "pw1"), ("user_2_1", "pw2"), ("user_3_1", "pw3"), ("user_4_1", "pw4")]) | |