jmercat's picture
Removed history to avoid any unverified information being released
5769ee4
raw
history blame
4.13 kB
import os
from mmcv import Config
import matplotlib.pyplot as plt
import numpy as np
from pytorch_lightning.utilities.seed import seed_everything
import torch
from risk_biased.scene_dataset.scene import RandomScene, RandomSceneParams
from risk_biased.scene_dataset.scene_plotter import ScenePlotter
from risk_biased.utils.cost import (
DistanceCostTorch,
DistanceCostParams,
TTCCostTorch,
TTCCostParams,
)
from risk_biased.utils.load_model import load_from_config
if __name__ == "__main__":
working_dir = os.path.dirname(os.path.realpath(__file__))
config_path = os.path.join(
working_dir, "..", "..", "risk_biased", "config", "learning_config.py"
)
config = Config.fromfile(config_path)
model, loaders, config = load_from_config(config)
if config.seed is not None:
seed_everything(config.seed)
is_torch = True
n_scenes = 100
risk_level = 0
fig, ax = plt.subplots()
scene_params = RandomSceneParams.from_config(config)
scene_params.batch_size = n_scenes
test_scene = RandomScene(
scene_params,
is_torch=is_torch,
)
plotter = ScenePlotter(test_scene, ax=ax)
num_steps = config.num_steps
time = config.sample_times[config.num_steps - 1]
dist_cost = DistanceCostTorch(DistanceCostParams.from_config(config))
ttc_cost = TTCCostTorch(TTCCostParams.from_config(config))
len_traj = int(config.time_scene / test_scene.dt)
ped_trajs = test_scene.get_pedestrians_trajectories()[
:, :, [int(round(t / config.dt)) for t in config.sample_times]
]
ego_traj = test_scene.get_ego_ref_trajectory(config.sample_times)
batch_size = ped_trajs.shape[0]
normalized_trajs, offset = loaders.normalize_trajectory(ped_trajs)
x = normalized_trajs[:, :, : config.num_steps]
ego_history = ego_traj[:, :, : config.num_steps].repeat(batch_size, 1, 1, 1)
ego_future = ego_traj[:, :, config.num_steps :].repeat(batch_size, 1, 1, 1)
mask_x = torch.ones_like(x[..., 0])
map = torch.empty(ego_history.shape[0], 0, 0, 2, device=mask_x.device)
mask_map = torch.empty(ego_history.shape[0], 0, 0, device=mask_x.device)
# ego_conditioning = model.get_ego_conditioning(ego_history, ego_future)
pred = (
model.predict_step(
(x, mask_x, map, mask_map, offset, ego_history, ego_future),
0,
risk_level=torch.ones(n_scenes, 1, device=x.device) * risk_level,
)
.cpu()
.detach()
.numpy()
)
text_length = 10
text_height = 1
ind = int(np.random.rand() * n_scenes)
agent_selected = 0
plotter.draw_scene(ind, time=time)
plotter.draw_trajectory(
ped_trajs[ind, agent_selected, config.num_steps :], color="g"
)
plotter.draw_trajectory(ped_trajs[ind, agent_selected, : config.num_steps])
plotter.draw_trajectory(pred[ind, agent_selected], color="r")
ped_velocities = test_scene.get_pedestrians_velocities().repeat(
(1, 1, ped_trajs.shape[2], 1)
)
cost, (ttc, dist) = ttc_cost(
ego_traj[:, :, config.num_steps :],
ped_trajs[:, :, config.num_steps :],
test_scene.get_ego_ref_velocity(),
ped_velocities[:, :, config.num_steps :],
)
print(f"Equation TTC: {ttc[ind, agent_selected, num_steps]:.2f}")
print(f"Distance at TTC {dist[ind, agent_selected, num_steps]:.2f}")
plt.text(
test_scene.road_length - text_length,
test_scene.road_width - 2 * text_height,
f"TTC cost: {cost[ind, agent_selected]:.2f}",
)
cost, dist = dist_cost(
ego_traj[:, :, config.num_steps :], ped_trajs[:, :, config.num_steps :]
)
cost = cost[ind, agent_selected]
if is_torch:
print(
f"Min distance {torch.sqrt(torch.min(dist, 2)[0][ind, agent_selected]):.2f}"
)
else:
print(f"Min distance {np.sqrt(np.min(dist, 2)[ind, agent_selected]):.2f}")
ax.text(
test_scene.road_length - text_length,
test_scene.road_width - 3 * text_height,
f"Distance cost: {cost:.2f}",
)
plt.tight_layout()
plt.show()