jmercat's picture
Removed history to avoid any unverified information being released
5769ee4
raw
history blame
25.3 kB
from einops.layers.torch import Rearrange
from einops import rearrange, repeat
import torch
import torch.nn as nn
from risk_biased.models.multi_head_attention import MultiHeadAttention
from risk_biased.models.context_gating import ContextGating
from risk_biased.models.mlp import MLP
class SequenceEncoderMaskedLSTM(nn.Module):
"""MLP followed with a masked LSTM implementation with one layer.
Args:
input_dim : dimension of the input variable
h_dim : dimension of a hidden layer of MLP
"""
def __init__(self, input_dim: int, h_dim: int) -> None:
super().__init__()
self._group_objects = Rearrange("b o ... -> (b o) ...")
self._embed = nn.Linear(in_features=input_dim, out_features=h_dim)
self._lstm = nn.LSTMCell(
input_size=h_dim, hidden_size=h_dim
) # expects(batch,seq,features)
self.h0 = nn.parameter.Parameter(torch.zeros(1, h_dim))
self.c0 = nn.parameter.Parameter(torch.zeros(1, h_dim))
def forward(self, input: torch.Tensor, mask_input: torch.Tensor) -> torch.Tensor:
"""Forward function for MapEncoder
Args:
input (torch.Tensor): (batch_size, num_objects, seq_len, input_dim) tensor
mask_input (torch.Tensor): (batch_size, num_objects, seq_len) bool tensor (True if data is good False if data is missing)
Returns:
torch.Tensor: (batch_size, num_objects, output_dim) tensor
"""
batch_size, num_objects, seq_len, _ = input.shape
split_objects = Rearrange("(b o) f -> b o f", b=batch_size, o=num_objects)
input = self._group_objects(input)
mask_input = self._group_objects(mask_input)
embedded_input = self._embed(input)
# One to many encoding of the input sequence with masking for missing points
mask_input = mask_input.float()
h = mask_input[:, 0, None] * embedded_input[:, 0, :] + (
1 - mask_input[:, 0, None]
) * repeat(self.h0, "b f -> (size b) f", size=batch_size * num_objects)
c = repeat(self.c0, "b f -> (size b) f", size=batch_size * num_objects)
for i in range(seq_len):
new_input = (
mask_input[:, i, None] * embedded_input[:, i, :]
+ (1 - mask_input[:, i, None]) * h
)
h, c = self._lstm(new_input, (h, c))
return split_objects(h)
class SequenceEncoderLSTM(nn.Module):
"""MLP followed with an LSTM with one layer.
Args:
input_dim : dimension of the input variable
h_dim : dimension of a hidden layer of MLP
"""
def __init__(self, input_dim: int, h_dim: int) -> None:
super().__init__()
self._group_objects = Rearrange("b o ... -> (b o) ...")
self._embed = nn.Linear(in_features=input_dim, out_features=h_dim)
self._lstm = nn.LSTM(
input_size=h_dim,
hidden_size=h_dim,
batch_first=True,
) # expects(batch,seq,features)
self.h0 = nn.parameter.Parameter(torch.zeros(1, h_dim))
self.c0 = nn.parameter.Parameter(torch.zeros(1, h_dim))
def forward(self, input: torch.Tensor, mask_input: torch.Tensor) -> torch.Tensor:
"""Forward function for MapEncoder
Args:
input (torch.Tensor): (batch_size, num_objects, seq_len, input_dim) tensor
mask_input (torch.Tensor): (batch_size, num_objects, seq_len) bool tensor (True if data is good False if data is missing)
Returns:
torch.Tensor: (batch_size, num_objects, output_dim) tensor
"""
batch_size, num_objects, seq_len, _ = input.shape
split_objects = Rearrange("(b o) f -> b o f", b=batch_size, o=num_objects)
input = self._group_objects(input)
mask_input = self._group_objects(mask_input)
embedded_input = self._embed(input)
# One to many encoding of the input sequence with masking for missing points
mask_input = mask_input.float()
h = (
mask_input[:, 0, None] * embedded_input[:, 0, :]
+ (1 - mask_input[:, 0, None])
* repeat(
self.h0, "one f -> one size f", size=batch_size * num_objects
).contiguous()
)
c = repeat(
self.c0, "one f -> one size f", size=batch_size * num_objects
).contiguous()
_, (h, _) = self._lstm(embedded_input, (h, c))
# for i in range(seq_len):
# new_input = (
# mask_input[:, i, None] * embedded_input[:, i, :]
# + (1 - mask_input[:, i, None]) * h
# )
# h, c = self._lstm(new_input, (h, c))
return split_objects(h.squeeze(0))
class SequenceEncoderMLP(nn.Module):
"""MLP implementation.
Args:
input_dim : dimension of the input variable
h_dim : dimension of a hidden layer of MLP
num_layers: number of layers to use in the MLP
sequence_length: dimension of the input sequence
is_mlp_residual: set to True to add a linear transformation of the input to the output of the MLP
"""
def __init__(
self,
input_dim: int,
h_dim: int,
num_layers: int,
sequence_length: int,
is_mlp_residual: bool,
) -> None:
super().__init__()
self._mlp = MLP(
input_dim * sequence_length, h_dim, h_dim, num_layers, is_mlp_residual
)
def forward(self, input: torch.Tensor, mask_input: torch.Tensor) -> torch.Tensor:
"""Forward function for MapEncoder
Args:
input (torch.Tensor): (batch_size, num_objects, seq_len, input_dim) tensor
mask_input (torch.Tensor): (batch_size, num_objects, seq_len) bool tensor (True if data is good False if data is missing)
Returns:
torch.Tensor: (batch_size, num_objects, output_dim) tensor
"""
batch_size, num_objects, _, _ = input.shape
input = input * mask_input.unsqueeze(-1)
h = rearrange(input, "b o s f -> (b o) (s f)")
mask_input = rearrange(mask_input, "b o s -> (b o) s")
if h.shape[-1] == 0:
h = h.view(batch_size, 0, h.shape[0])
else:
h = self._mlp(h)
h = rearrange(h, "(b o) f -> b o f", b=batch_size, o=num_objects)
return h
class SequenceDecoderLSTM(nn.Module):
"""A one to many LSTM implementation with one layer.
Args:
h_dim : dimension of a hidden layer
"""
def __init__(self, h_dim: int) -> None:
super().__init__()
self._group_objects = Rearrange("b o f -> (b o) f")
self._lstm = nn.LSTM(input_size=h_dim, hidden_size=h_dim)
self._out_layer = nn.Linear(in_features=h_dim, out_features=h_dim)
self.c0 = nn.parameter.Parameter(torch.zeros(1, h_dim))
def forward(self, input: torch.Tensor, sequence_length: int) -> torch.Tensor:
"""Forward function for MapEncoder
Args:
input (torch.Tensor): (batch_size, num_objects, input_dim) tensor
sequence_length: output sequence length to create
Returns:
torch.Tensor: (batch_size, num_objects, output_dim) tensor
"""
batch_size, num_objects, _ = input.shape
h = repeat(input, "b o f -> one (b o) f", one=1).contiguous()
c = repeat(
self.c0, "one f -> one size f", size=batch_size * num_objects
).contiguous()
seq_h = repeat(h, "one b f -> (one t) b f", t=sequence_length).contiguous()
h, (_, _) = self._lstm(seq_h, (h, c))
h = rearrange(h, "t (b o) f -> b o t f", b=batch_size, o=num_objects)
return self._out_layer(h)
class SequenceDecoderMLP(nn.Module):
"""A one to many MLP implementation.
Args:
h_dim : dimension of a hidden layer
num_layers: number of layers to use in the MLP
sequence_length: output sequence length to return
is_mlp_residual: set to True to add a linear transformation of the input to the output of the MLP
"""
def __init__(
self, h_dim: int, num_layers: int, sequence_length: int, is_mlp_residual: bool
) -> None:
super().__init__()
self._mlp = MLP(
h_dim, h_dim * sequence_length, h_dim, num_layers, is_mlp_residual
)
def forward(self, input: torch.Tensor, sequence_length: int) -> torch.Tensor:
"""Forward function for MapEncoder
Args:
input (torch.Tensor): (batch_size, num_objects, input_dim) tensor
sequence_length: output sequence length to create
Returns:
torch.Tensor: (batch_size, num_objects, output_dim) tensor
"""
batch_size, num_objects, _ = input.shape
h = rearrange(input, "b o f -> (b o) f")
h = self._mlp(h)
h = rearrange(
h, "(b o) (s f) -> b o s f", b=batch_size, o=num_objects, s=sequence_length
)
return h
class AttentionBlock(nn.Module):
"""Block performing agent-map cross attention->ReLU(linear)->+residual->layer_norm->agent-agent attention->ReLU(linear)->+residual->layer_norm
Args:
hidden_dim: feature dimension
num_attention_heads: number of attention heads to use
"""
def __init__(self, hidden_dim: int, num_attention_heads: int):
super().__init__()
self._num_attention_heads = num_attention_heads
self._agent_map_attention = MultiHeadAttention(
hidden_dim, num_attention_heads, hidden_dim, hidden_dim
)
self._lin1 = nn.Linear(hidden_dim, hidden_dim)
self._layer_norm1 = nn.LayerNorm(hidden_dim)
self._agent_agent_attention = MultiHeadAttention(
hidden_dim, num_attention_heads, hidden_dim, hidden_dim
)
self._lin2 = nn.Linear(hidden_dim, hidden_dim)
self._layer_norm2 = nn.LayerNorm(hidden_dim)
self._activation = nn.ReLU()
def forward(
self,
encoded_agents: torch.Tensor,
mask_agents: torch.Tensor,
encoded_absolute_agents: torch.Tensor,
encoded_map: torch.Tensor,
mask_map: torch.Tensor,
) -> torch.Tensor:
"""Forward function of the block, returning only the output (no attention matrix)
Args:
encoded_agents: (batch_size, num_agents, feature_size) tensor of the encoded agent tracks
mask_agents: (batch_size, num_agents) tensor True if agent track is good False if it is just padding
encoded_absolute_agents: (batch_size, num_agents, feature_size) tensor of the encoded absolute agent positions
encoded_map: (batch_size, num_objects, feature_size) tensor of the encoded map object features
mask_map: (batch_size, num_objects) tensor True if object is good False if it is just padding
"""
# Check if map_info is available. If not, don't compute cross-attention with it
if mask_map.any():
mask_agent_map = torch.einsum("ba,bo->bao", mask_agents, mask_map)
h, _ = self._agent_map_attention(
encoded_agents + encoded_absolute_agents,
encoded_map,
encoded_map,
mask=mask_agent_map,
)
h = torch.masked_fill(h, torch.logical_not(mask_agents.unsqueeze(-1)), 0)
h = torch.sigmoid(self._lin1(h))
h = self._layer_norm1(encoded_agents + h)
else:
h = self._layer_norm1(encoded_agents)
h_res = h.clone()
agent_agent_mask = torch.einsum("ba,be->bae", mask_agents, mask_agents)
h = h + encoded_absolute_agents
h, _ = self._agent_agent_attention(h, h, h, mask=agent_agent_mask)
h = torch.masked_fill(h, torch.logical_not(mask_agents.unsqueeze(-1)), 0)
h = self._activation(self._lin2(h))
h = self._layer_norm2(h_res + h)
return h
class CG_block(nn.Module):
"""Block performing context gating agent-map
Args:
hidden_dim: feature dimension
dim_expansion: multiplicative factor on the hidden dimension for the global context representation
num_layers: number of layers to use in the MLP for context encoding
is_mlp_residual: set to True to add a linear transformation of the input to the output of the MLP
"""
def __init__(
self,
hidden_dim: int,
dim_expansion: int,
num_layers: int,
is_mlp_residual: bool,
):
super().__init__()
self._agent_map = ContextGating(
hidden_dim,
hidden_dim * dim_expansion,
num_layers=num_layers,
is_mlp_residual=is_mlp_residual,
)
self._lin1 = nn.Linear(hidden_dim, hidden_dim)
self._layer_norm1 = nn.LayerNorm(hidden_dim)
self._agent_agent = ContextGating(
hidden_dim, hidden_dim * dim_expansion, num_layers, is_mlp_residual
)
self._lin2 = nn.Linear(hidden_dim, hidden_dim)
self._activation = nn.ReLU()
def forward(
self,
encoded_agents: torch.Tensor,
mask_agents: torch.Tensor,
encoded_absolute_agents: torch.Tensor,
encoded_map: torch.Tensor,
mask_map: torch.Tensor,
global_context: torch.Tensor,
) -> torch.Tensor:
"""Forward function of the block, returning the output and global context
Args:
encoded_agents: (batch_size, num_agents, feature_size) tensor of the encoded agent tracks
mask_agents: (batch_size, num_agents) tensor True if agent track is good False if it is just padding
encoded_absolute_agents: (batch_size, num_agents, feature_size) tensor of the encoded absolute agent positions
encoded_map: (batch_size, num_objects, feature_size) tensor of the encoded map object features
mask_map: (batch_size, num_objects) tensor True if object is good False if it is just padding
global_context: (batch_size, dim_context) tensor representing the global context
"""
# Check if map_info is available. If not, don't compute cross-interaction with it
if mask_map.any():
s, global_context = self._agent_map(
encoded_agents + encoded_absolute_agents, encoded_map, global_context
)
s = s * mask_agents.unsqueeze(-1)
s = self._activation(self._lin1(s))
s = self._layer_norm1(encoded_agents + s)
else:
s = self._layer_norm1(encoded_agents)
s = s + encoded_absolute_agents
s, global_context = self._agent_agent(s, s, global_context)
s = s * mask_agents.unsqueeze(-1)
s = self._lin2(s)
return s, global_context
class HybridBlock(nn.Module):
"""Block performing agent-map cross context_gating->ReLU(linear)->+residual->layer_norm->agent-agent attention->ReLU(linear)->+residual->layer_norm
Args:
hidden_dim: feature dimension
num_attention_heads: number of attention heads to use
dim_expansion: multiplicative factor on the hidden dimension for the global context representation
num_layers: number of layers to use in the MLP for context encoding
is_mlp_residual: set to True to add a linear transformation of the input to the output of the MLP
"""
def __init__(
self,
hidden_dim: int,
num_attention_heads: int,
dim_expansion: int,
num_layers: int,
is_mlp_residual: bool,
):
super().__init__()
self._num_attention_heads = num_attention_heads
self._agent_map_cg = ContextGating(
hidden_dim,
hidden_dim * dim_expansion,
num_layers=num_layers,
is_mlp_residual=is_mlp_residual,
)
self._lin1 = nn.Linear(hidden_dim, hidden_dim)
self._layer_norm1 = nn.LayerNorm(hidden_dim)
self._agent_agent_attention = MultiHeadAttention(
hidden_dim, num_attention_heads, hidden_dim, hidden_dim
)
self._lin2 = nn.Linear(hidden_dim, hidden_dim)
self._layer_norm2 = nn.LayerNorm(hidden_dim)
self._activation = nn.ReLU()
def forward(
self,
encoded_agents: torch.Tensor,
mask_agents: torch.Tensor,
encoded_absolute_agents: torch.Tensor,
encoded_map: torch.Tensor,
mask_map: torch.Tensor,
global_context: torch.Tensor,
) -> torch.Tensor:
"""Forward function of the block, returning the output and the context (no attention matrix)
Args:
encoded_agents: (batch_size, num_agents, feature_size) tensor of the encoded agent tracks
mask_agents: (batch_size, num_agents) tensor True if agent track is good False if it is just padding
encoded_absolute_agents: (batch_size, num_agents, feature_size) tensor of the encoded absolute agent positions
encoded_map: (batch_size, num_objects, feature_size) tensor of the encoded map object features
mask_map: (batch_size, num_objects) tensor True if object is good False if it is just padding
global_context: (batch_size, dim_context) tensor representing the global context
"""
# Check if map_info is available. If not, don't compute cross-context gating with it
if mask_map.any():
# mask_agent_map = torch.logical_not(
# torch.einsum("ba,bo->bao", mask_agents, mask_map)
# )
h, global_context = self._agent_map_cg(
encoded_agents + encoded_absolute_agents, encoded_map, global_context
)
h = torch.masked_fill(h, torch.logical_not(mask_agents.unsqueeze(-1)), 0)
h = self._activation(self._lin1(h))
h = self._layer_norm1(encoded_agents + h)
else:
h = self._layer_norm1(encoded_agents)
h_res = h.clone()
agent_agent_mask = torch.einsum("ba,be->bae", mask_agents, mask_agents)
h = h + encoded_absolute_agents
h, _ = self._agent_agent_attention(h, h, h, mask=agent_agent_mask)
h = torch.masked_fill(h, torch.logical_not(mask_agents.unsqueeze(-1)), 0)
h = self._activation(self._lin2(h))
h = self._layer_norm2(h_res + h)
return h, global_context
class MCG(nn.Module):
"""Multiple context encoding blocks
Args:
hidden_dim: feature dimension
dim_expansion: multiplicative factor on the hidden dimension for the global context representation
num_layers: number of layers to use in the MLP for context encoding
num_blocks: number of successive context encoding blocks to use in the module
is_mlp_residual: set to True to add a linear transformation of the input to the output of the MLP
"""
def __init__(
self,
hidden_dim: int,
dim_expansion: int,
num_layers: int,
num_blocks: int,
is_mlp_residual: bool,
):
super().__init__()
self.initial_global_context = nn.parameter.Parameter(
torch.ones(1, hidden_dim * dim_expansion)
)
list_cg = []
for i in range(num_blocks):
list_cg.append(
CG_block(hidden_dim, dim_expansion, num_layers, is_mlp_residual)
)
self.mcg = nn.ModuleList(list_cg)
def forward(
self,
encoded_agents: torch.Tensor,
mask_agents: torch.Tensor,
encoded_absolute_agents: torch.Tensor,
encoded_map: torch.Tensor,
mask_map: torch.Tensor,
) -> torch.Tensor:
"""Forward function of the block, returning only the output (no context)
Args:
encoded_agents: (batch_size, num_agents, feature_size) tensor of the encoded agent tracks
mask_agents: (batch_size, num_agents) tensor True if agent track is good False if it is just padding
encoded_absolute_agents: (batch_size, num_agents, feature_size) tensor of the encoded absolute agent positions
encoded_map: (batch_size, num_objects, feature_size) tensor of the encoded map object features
mask_map: (batch_size, num_objects) tensor True if object is good False if it is just padding
"""
s = encoded_agents
c = self.initial_global_context
sum_s = s
sum_c = c
for i, cg in enumerate(self.mcg):
s_new, c_new = cg(
s, mask_agents, encoded_absolute_agents, encoded_map, mask_map, c
)
sum_s = sum_s + s_new
sum_c = sum_c + c_new
s = (sum_s / (i + 2)).clone()
c = (sum_c / (i + 2)).clone()
return s
class MAB(nn.Module):
"""Multiple Attention Blocks
Args:
hidden_dim: feature dimension
num_attention_heads: number of attention heads to use
num_blocks: number of successive blocks to use in the module.
"""
def __init__(
self,
hidden_dim: int,
num_attention_heads: int,
num_blocks: int,
):
super().__init__()
list_attention = []
for i in range(num_blocks):
list_attention.append(AttentionBlock(hidden_dim, num_attention_heads))
self.attention_blocks = nn.ModuleList(list_attention)
def forward(
self,
encoded_agents: torch.Tensor,
mask_agents: torch.Tensor,
encoded_absolute_agents: torch.Tensor,
encoded_map: torch.Tensor,
mask_map: torch.Tensor,
) -> torch.Tensor:
"""Forward function of the block, returning only the output (no attention matrix)
Args:
encoded_agents: (batch_size, num_agents, feature_size) tensor of the encoded agent tracks
mask_agents: (batch_size, num_agents) tensor True if agent track is good False if it is just padding
encoded_absolute_agents: (batch_size, num_agents, feature_size) tensor of the encoded absolute agent positions
encoded_map: (batch_size, num_objects, feature_size) tensor of the encoded map object features
mask_map: (batch_size, num_objects) tensor True if object is good False if it is just padding
"""
h = encoded_agents
sum_h = h
for i, attention in enumerate(self.attention_blocks):
h_new = attention(
h, mask_agents, encoded_absolute_agents, encoded_map, mask_map
)
sum_h = sum_h + h_new
h = (sum_h / (i + 2)).clone()
return h
class MHB(nn.Module):
"""Multiple Hybrid Blocks
Args:
hidden_dim: feature dimension
num_attention_heads: number of attention heads to use
dim_expansion: multiplicative factor on the hidden dimension for the global context representation
num_layers: number of layers to use in the MLP for context encoding
num_blocks: number of successive blocks to use in the module.
is_mlp_residual: set to True to add a linear transformation of the input to the output of the MLP
"""
def __init__(
self,
hidden_dim: int,
num_attention_heads: int,
dim_expansion: int,
num_layers: int,
num_blocks: int,
is_mlp_residual: bool,
):
super().__init__()
self.initial_global_context = nn.parameter.Parameter(
torch.ones(1, hidden_dim * dim_expansion)
)
list_hb = []
for i in range(num_blocks):
list_hb.append(
HybridBlock(
hidden_dim,
num_attention_heads,
dim_expansion,
num_layers,
is_mlp_residual,
)
)
self.hybrid_blocks = nn.ModuleList(list_hb)
def forward(
self,
encoded_agents: torch.Tensor,
mask_agents: torch.Tensor,
encoded_absolute_agents: torch.Tensor,
encoded_map: torch.Tensor,
mask_map: torch.Tensor,
) -> torch.Tensor:
"""Forward function of the block, returning only the output (no attention matrix nor context)
Args:
encoded_agents: (batch_size, num_agents, feature_size) tensor of the encoded agent tracks
mask_agents: (batch_size, num_agents) tensor True if agent track is good False if it is just padding
encoded_absolute_agents: (batch_size, num_agents, feature_size) tensor of the encoded absolute agent positions
encoded_map: (batch_size, num_objects, feature_size) tensor of the encoded map object features
mask_map: (batch_size, num_objects) tensor True if object is good False if it is just padding
"""
sum_h = encoded_agents
sum_c = self.initial_global_context
h = encoded_agents
c = self.initial_global_context
for i, hb in enumerate(self.hybrid_blocks):
h_new, c_new = hb(
h, mask_agents, encoded_absolute_agents, encoded_map, mask_map, c
)
sum_h = sum_h + h_new
sum_c = sum_c + c_new
h = (sum_h / (i + 2)).clone()
c = (sum_c / (i + 2)).clone()
return h