jmercat's picture
Removed history to avoid any unverified information being released
5769ee4
raw
history blame
5.16 kB
import os
import pytest
import torch
import numpy as np
from mmcv import Config
from risk_biased.utils.cost import BaseCostTorch, TTCCostTorch, DistanceCostTorch
from risk_biased.utils.cost import BaseCostNumpy, TTCCostNumpy, DistanceCostNumpy
from risk_biased.utils.cost import (
CostParams,
TTCCostParams,
DistanceCostParams,
)
@pytest.fixture(scope="module")
def params():
torch.manual_seed(0)
working_dir = os.path.dirname(os.path.realpath(__file__))
config_path = os.path.join(
working_dir, "..", "..", "..", "risk_biased", "config", "learning_config.py"
)
cfg = Config.fromfile(config_path)
cfg.cost_scale = 1
cfg.cost_reduce = "mean"
cfg.ego_length = 4
cfg.ego_width = 1.75
cfg.distance_bandwidth = 2
cfg.time_bandwidth = 2
cfg.min_velocity_diff = 0.01
return cfg
def get_fake_input(batch_size, num_steps, is_torch, use_mask, num_agents=0):
if num_agents <= 0:
shape = [batch_size, num_steps, 2]
else:
shape = [batch_size, num_agents, num_steps, 2]
if is_torch:
x1 = torch.rand(shape)
x2 = torch.rand(shape)
v1 = torch.rand(shape)
v2 = torch.rand(shape)
if use_mask:
mask = torch.rand(shape[:-1]) > 0.1
else:
mask = None
else:
x1 = np.random.uniform(size=shape)
x2 = np.random.uniform(size=shape)
v1 = np.random.uniform(size=shape)
v2 = np.random.uniform(size=shape)
if use_mask:
mask = np.random.uniform(size=shape[:-1]) > 0.1
else:
mask = None
return x1, x2, v1, v2, mask
@pytest.mark.parametrize(
"reduce, batch_size, num_steps, is_torch, use_mask, num_agents",
[
("mean", 8, 5, True, True, 0),
("min", 4, 2, False, True, 2),
("max", 4, 2, True, False, 3),
("now", 16, 1, False, False, 1),
("final", 1, 4, True, True, 0),
],
)
def test_base_cost(
params,
reduce: str,
batch_size: int,
num_steps: int,
is_torch: bool,
use_mask: bool,
num_agents: int,
):
params.cost_reduce = reduce
cost_params = CostParams.from_config(params)
if is_torch:
base_cost = BaseCostTorch(cost_params)
else:
base_cost = BaseCostNumpy(cost_params)
x1, x2, v1, v2, mask = get_fake_input(
batch_size, num_steps, is_torch, use_mask, num_agents
)
cost, _ = base_cost(x1, x2, v1, v2, mask)
if num_agents > 0:
assert cost.shape == (
batch_size,
num_agents,
)
else:
assert cost.shape == (batch_size,)
assert (cost == 0).all()
assert base_cost.scale == params.cost_scale
assert base_cost.distance_bandwidth == 1
assert base_cost.time_bandwidth == 1
@pytest.mark.parametrize(
"param_class, cost_class, reduce, batch_size, num_steps, is_torch, use_mask, num_agents",
[
(DistanceCostParams, DistanceCostTorch, "max", 4, 2, True, True, 3),
(DistanceCostParams, DistanceCostNumpy, "now", 16, 1, False, True, 0),
(DistanceCostParams, DistanceCostTorch, "final", 1, 4, True, False, 2),
(TTCCostParams, TTCCostTorch, "max", 4, 2, True, False, 0),
(TTCCostParams, TTCCostNumpy, "now", 16, 1, False, True, 3),
(TTCCostParams, TTCCostNumpy, "final", 1, 4, False, True, 1),
],
)
def test_generic_cost(
params,
param_class,
cost_class,
reduce: str,
batch_size: int,
num_steps: int,
is_torch: bool,
use_mask: bool,
num_agents: int,
):
params.cost_reduce = reduce
cost_params = param_class.from_config(params)
x1, x2, v1, v2, mask = get_fake_input(
batch_size, num_steps, is_torch, use_mask, num_agents
)
compute_cost = cost_class(cost_params)
cost, _ = compute_cost(x1, x2, v1, v2, mask)
# Shaped is reduced
if num_agents > 0:
assert cost.shape == (batch_size, num_agents)
else:
assert cost.shape == (batch_size,)
assert (cost != 0).any()
assert compute_cost.scale == params.cost_scale
# Rescale the cost for comparison
compute_cost.scale = params.cost_scale + 10
assert compute_cost.scale != params.cost_scale
rescaled_cost, _ = compute_cost(x1, x2, v1, v2, mask)
# all rescaled cost are larger but 0 cost is equal to rescaled cost
assert (rescaled_cost >= cost).all()
# at least some rescaled cost are strictly larger than normal scale cost
assert (rescaled_cost > cost).any()
# Compute mean and min costs to compare
params.cost_reduce = "mean"
cost_params_mean = param_class.from_config(params)
cost_function_mean = cost_class(cost_params_mean)
cost_mean, _ = cost_function_mean(x1, x2, v1, v2)
params.cost_reduce = "min"
cost_params_min = param_class.from_config(params)
cost_function_min = cost_class(cost_params_min)
cost_min, _ = cost_function_min(x1, x2, v1, v2)
# max reduce is larger than mean
if reduce == "max":
assert (cost >= cost_mean).all()
# min reduce is lower than any othir
assert (cost_mean >= cost_min).all()
assert (cost >= cost_min).all()