jmercat's picture
Removed history to avoid any unverified information being released
5769ee4
raw
history blame
9.39 kB
import atexit
import copy
import os
from mmcv import Config
import numpy as np
import pytest
from pytorch_lightning import seed_everything
import torch
import shutil
from torch.utils.data import DataLoader
from risk_biased.scene_dataset.loaders import SceneDataLoaders
from risk_biased.scene_dataset.scene import SceneDataset, RandomSceneParams
from risk_biased.scene_dataset.scene import load_create_dataset
def clean_up_dataset_dir():
"""
This function is designed to delete the directories
that might have created even if the test fails early
by being called on exit.
"""
current_dir = os.path.dirname(os.path.realpath(__file__))
dataset_dir0 = os.path.join(current_dir, "scene_dataset_000")
if os.path.exists(dataset_dir0):
shutil.rmtree(dataset_dir0)
dataset_dir1 = os.path.join(current_dir, "scene_dataset_001")
if os.path.exists(dataset_dir1):
shutil.rmtree(dataset_dir1)
# atexit.register(clean_up_dataset_dir)
@pytest.fixture(scope="module")
def params():
seed_everything(0)
cfg = Config()
cfg.batch_size = 4
cfg.time_scene = 5.0
cfg.dt = 0.1
cfg.sample_times = [t * cfg.dt for t in range(0, int(cfg.time_scene / cfg.dt))]
cfg.ego_ref_speed = 14
cfg.ego_speed_init_low = 4.0
cfg.ego_speed_init_high = 16.0
cfg.ego_acceleration_mean_low = -1.5
cfg.ego_acceleration_mean_high = 1.5
cfg.ego_acceleration_std = 1.5
cfg.ego_length = 4
cfg.ego_width = 1.75
cfg.fast_speed = 2.0
cfg.slow_speed = 1.0
cfg.p_change_pace = 0.2
cfg.proportion_fast = 0.5
cfg.perception_noise_std = 0.03
cfg.state_dim = 2
cfg.num_steps = 3
cfg.num_steps_future = len(cfg.sample_times) - cfg.num_steps
cfg.file_name = "test_scene_data"
cfg.datasets_sizes = {"train": 100, "val": 10, "test": 30}
cfg.datasets = list(cfg.datasets_sizes.keys())
cfg.num_workers = 2
cfg.dataset_parameters = {
"dt": cfg.dt,
"time_scene": cfg.time_scene,
"sample_times": cfg.sample_times,
"ego_ref_speed": cfg.ego_ref_speed,
"ego_speed_init_low": cfg.ego_speed_init_low,
"ego_speed_init_high": cfg.ego_speed_init_high,
"ego_acceleration_mean_low": cfg.ego_acceleration_mean_low,
"ego_acceleration_mean_high": cfg.ego_acceleration_mean_high,
"ego_acceleration_std": cfg.ego_acceleration_std,
"fast_speed": cfg.fast_speed,
"slow_speed": cfg.slow_speed,
"p_change_pace": cfg.p_change_pace,
"proportion_fast": cfg.proportion_fast,
"file_name": cfg.file_name,
"datasets_sizes": cfg.datasets_sizes,
"state_dim": cfg.state_dim,
"num_steps": cfg.num_steps,
"num_steps_future": cfg.num_steps_future,
"perception_noise_std": cfg.perception_noise_std,
}
return cfg
@pytest.mark.parametrize(
"n_data, batch_size, sample_times, state_dim",
[(1024, 128, [0.0, 1.0, 2.0, 3.0, 4.0], 2)],
)
def test_load_data(params, n_data, batch_size, sample_times, state_dim):
params = copy.deepcopy(params)
params.batch_size = batch_size
params.sample_times = sample_times
scene_params = RandomSceneParams.from_config(params)
dataset_rand = SceneDataset(n_data, scene_params, pre_fetch=False)
data_loader_rand = DataLoader(
dataset_rand, batch_size, collate_fn=dataset_rand.collate_fn, shuffle=False
)
dataset_prefetch = SceneDataset(n_data, scene_params, pre_fetch=True)
data_loader_prefetch = DataLoader(
dataset_prefetch,
batch_size,
collate_fn=dataset_prefetch.collate_fn,
shuffle=False,
)
for i, (batch_rand, batch_prefetch) in enumerate(
zip(data_loader_rand, data_loader_prefetch)
):
if i == 0:
first_batch_prefetch = batch_prefetch
first_batch_rand = batch_rand
# Check the shape of the data is the expected one
assert (
batch_rand.shape
== batch_prefetch.shape
== (batch_size, 1, len(sample_times), state_dim)
)
# Shuffle false and pre-fetch should loop back to the same batch
assert torch.allclose(next(iter(data_loader_prefetch)), first_batch_prefetch)
# Shuffle false but producing random batches should not loop back to the same batch
assert not torch.allclose(next(iter(data_loader_rand)), first_batch_rand)
class TestDataset:
@pytest.fixture(autouse=True)
def setup(self, params):
clean_up_dataset_dir()
current_dir = os.path.dirname(os.path.realpath(__file__))
[data_train, data_val, data_test] = load_create_dataset(params, current_dir)
self.loaders = SceneDataLoaders(
params.state_dim,
params.num_steps,
params.num_steps_future,
params.batch_size,
data_train=data_train,
data_val=data_val,
data_test=data_test,
num_workers=params.num_workers,
)
assert os.path.exists(os.path.join(current_dir, "scene_dataset_000"))
assert not os.path.exists(os.path.join(current_dir, "scene_dataset_001"))
self.batch = torch.rand(
params.batch_size,
params.num_steps + params.num_steps_future,
params.state_dim,
)
self.normalized_batch, self.offset = self.loaders.normalize_trajectory(
self.batch
)
(
self.normalized_batch_past,
self.normalized_batch_future,
) = self.loaders.split_trajectory(self.normalized_batch)
# Setup is done but some cleanup must be defined
yield
# Remove data directory after use
dataset_dir = os.path.join(current_dir, "scene_dataset_000")
shutil.rmtree(dataset_dir)
def test_setup_datasets(self, params):
current_dir = os.path.dirname(os.path.realpath(__file__))
assert os.path.exists(os.path.join(current_dir, "scene_dataset_000"))
# Should only load from directory that was created, not create a new one
[train_set, val_set, test_set] = load_create_dataset(
params, base_dir=current_dir
)
assert not os.path.exists(os.path.join(current_dir, "scene_dataset_001"))
train_path = os.path.join(
current_dir, "scene_dataset_000", "scene_dataset_train.npy"
)
val_path = os.path.join(
current_dir, "scene_dataset_000", "scene_dataset_val.npy"
)
test_path = os.path.join(
current_dir, "scene_dataset_000", "scene_dataset_test.npy"
)
# make sure paths for datasets exist
assert os.path.exists(train_path)
assert os.path.exists(val_path)
assert os.path.exists(test_path)
# make sure datasets match the specifications made in config
assert np.load(train_path).shape == (
2,
params.datasets_sizes["train"],
1,
params.num_steps + params.num_steps_future,
params.state_dim,
)
assert np.load(val_path).shape == (
2,
params.datasets_sizes["val"],
1,
params.num_steps + params.num_steps_future,
params.state_dim,
)
assert np.load(test_path).shape == (
2,
params.datasets_sizes["test"],
1,
params.num_steps + params.num_steps_future,
params.state_dim,
)
total_steps = params.num_steps + params.num_steps_future
assert list(train_set.shape) == [
2,
params.datasets_sizes.train,
1,
total_steps,
2,
]
assert list(val_set.shape) == [2, params.datasets_sizes.val, 1, total_steps, 2]
assert list(test_set.shape) == [
2,
params.datasets_sizes.test,
1,
total_steps,
2,
]
def test_split_trajectory(self, params):
batch_history, batch_future = self.loaders.split_trajectory(self.batch)
# make sure split_trajectory splits batch into history and future
assert torch.all(torch.eq(batch_history, self.batch[:, : params.num_steps, :]))
assert torch.all(torch.eq(batch_future, self.batch[:, params.num_steps :, :]))
def test_normalize_trajectory(self, params):
batch_copied = self.batch.detach().clone()
# make sure batch remains the same
assert torch.all(torch.eq(batch_copied, self.batch))
# test normalization of whole batch
assert torch.allclose(
self.normalized_batch + self.offset.unsqueeze(1), self.batch
)
assert torch.allclose(
self.batch - self.offset.unsqueeze(1), self.normalized_batch
)
batch_past, batch_fut = self.loaders.split_trajectory(self.batch)
# test normalization of history
assert torch.allclose(
self.normalized_batch_past + self.offset.unsqueeze(1), batch_past
)
def test_unnormalize_trajectory(self, params):
batch_future_test = self.loaders.unnormalize_trajectory(
self.normalized_batch_future, self.offset
)
# test unnormalization
assert torch.allclose(
self.normalized_batch_future + self.offset.unsqueeze(1), batch_future_test
)