File size: 8,107 Bytes
5769ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import math
import os

import pytest
import torch
from mmcv import Config

from risk_biased.mpc_planner.dynamics import PositionVelocityDoubleIntegrator
from risk_biased.mpc_planner.planner_cost import TrackingCost, TrackingCostParams
from risk_biased.utils.cost import TTCCostTorch, TTCCostParams
from risk_biased.utils.risk import get_risk_estimator
from risk_biased.utils.planner_utils import (
    to_state,
    get_interaction_cost,
    evaluate_risk,
    evaluate_control_sequence,
)


@pytest.fixture(scope="module")
def params():
    torch.manual_seed(0)
    working_dir = os.path.dirname(os.path.realpath(__file__))
    config_path = os.path.join(
        working_dir, "..", "..", "..", "risk_biased", "config", "learning_config.py"
    )
    waymo_config_path = os.path.join(
        working_dir, "..", "..", "..", "risk_biased", "config", "waymo_config.py"
    )
    paths = [config_path, waymo_config_path]
    if isinstance(paths, str):
        cfg = Config.fromfile(paths)
    else:
        cfg = Config.fromfile(paths[0])
        for path in paths[1:]:
            c = Config.fromfile(path)
            cfg.update(c)

    cfg.num_control_samples = 10

    cfg.dt = 0.1
    cfg.num_steps = 3
    cfg.num_steps_future = 5
    cfg.state_dim = 5

    cfg.tracking_cost_scale_longitudinal = 0.1
    cfg.tracking_cost_scale_lateral = 1.0
    cfg.tracking_cost_reduce = "mean"

    cfg.cost_scale = 10
    cfg.cost_reduce = "mean"
    cfg.distance_bandwidth = 2
    cfg.time_bandwidth = 0.5
    cfg.min_velocity_diff = 0.01

    cfg.risk_estimator = {"type": "cvar", "eps": 1e-3}

    return cfg


class TestPlannerUtils:
    @pytest.fixture(autouse=True)
    def setup(self, params):
        self.dynamics_model = PositionVelocityDoubleIntegrator(0.1)
        self.interaction_cost_function = TTCCostTorch(TTCCostParams.from_config(params))
        self.tracking_cost_function = TrackingCost(
            TrackingCostParams.from_config(params)
        )
        self.risk_estimator = get_risk_estimator(params.risk_estimator)
        self.dt = params.dt

    @pytest.mark.parametrize("ndim, sequence_size", [(2, 2), (3, 4), (4, 3)])
    def test_translate_position(self, ndim: int, sequence_size: int):
        translation_m = torch.Tensor([1.0, 2.0])

        state_pos = torch.zeros(sequence_size, 2)
        while state_pos.ndim < ndim:
            state_pos = state_pos.unsqueeze(0)
        state_pos = to_state(state_pos, self.dt)
        translated_state_pos = state_pos.translate(translation_m)
        assert torch.allclose(
            translated_state_pos.get_states(), state_pos.get_states() + translation_m
        )

        state_double_integrator = torch.zeros(sequence_size, 4)
        while state_double_integrator.ndim < ndim:
            state_double_integrator = state_double_integrator.unsqueeze(0)
        state_double_integrator = to_state(state_double_integrator, self.dt)
        translated_state_double_integrator = state_double_integrator.translate(
            translation_m
        )
        assert torch.allclose(
            translated_state_double_integrator.get_states(5),
            translated_state_pos.get_states(5),
        )

    @pytest.mark.parametrize("ndim, sequence_size", [(2, 3), (3, 5), (4, 2)])
    def test_rotate_angle(self, ndim: int, sequence_size: int):
        rotation_rad = torch.Tensor([math.pi / 2])

        state_pos = torch.ones(sequence_size, 2)
        while state_pos.ndim < ndim:
            state_pos = state_pos.unsqueeze(0)
        state_pos = to_state(state_pos, self.dt)
        rotated_state_pos = state_pos.rotate(rotation_rad)
        assert torch.allclose(
            rotated_state_pos.get_states(),
            torch.Tensor([-1.0, 1.0]).expand_as(state_pos.get_states()),
        )

        state_double_integrator = torch.Tensor([[1.0, 1.0, -1.0, 1.0]]).repeat(
            sequence_size, 1
        )
        while state_double_integrator.ndim < ndim:
            state_double_integrator = state_double_integrator.unsqueeze(0)
        state_double_integrator = to_state(state_double_integrator, self.dt)
        rotated_state_double_integrator = state_double_integrator.rotate(rotation_rad)
        assert torch.allclose(
            rotated_state_double_integrator.get_states(2),
            rotated_state_pos.get_states(2),
        )
        assert torch.allclose(
            rotated_state_double_integrator.get_states(4),
            torch.Tensor([-1.0, 1.0, -1.0, -1.0]).expand_as(
                rotated_state_pos.get_states(4)
            ),
        )

    @pytest.mark.parametrize(
        "with_ado_batch_dim, num_prediction_samples, num_agents",
        [(True, 1, 1), (False, 1, 2), (True, 5, 1), (False, 5, 2)],
    )
    def test_get_interaction_cost(
        self, params, with_ado_batch_dim, num_prediction_samples, num_agents
    ):
        ego_state_future = to_state(
            torch.randn(
                params.num_control_samples, 1, params.num_steps_future, params.state_dim
            ),
            params.dt,
        )

        if not with_ado_batch_dim:
            ado_position_future_samples = to_state(
                torch.randn(
                    num_prediction_samples,
                    num_agents,
                    params.num_steps_future,
                    params.state_dim,
                ),
                params.dt,
            )
        else:
            ado_position_future_samples = to_state(
                torch.randn(
                    num_prediction_samples,
                    num_agents,
                    params.num_steps_future,
                    params.state_dim,
                ),
                params.dt,
            )

        cost = get_interaction_cost(
            ego_state_future,
            ado_position_future_samples,
            self.interaction_cost_function,
        )

        assert cost.shape == torch.Size(
            [params.num_control_samples, num_agents, num_prediction_samples]
        )

    @pytest.mark.parametrize(
        "num_prediction_samples, num_agents, risk_level",
        [(1, 1, 0.0), (5, 2, 0.0), (1, 1, 0.9), (5, 2, 0.9)],
    )
    def test_evaluate_risk(
        self, params, num_prediction_samples, num_agents, risk_level
    ):
        cost = torch.rand(
            params.num_control_samples, num_agents, num_prediction_samples
        )
        weights = (
            torch.rand(params.num_control_samples, num_agents, num_prediction_samples)
            / num_prediction_samples
        )
        risk = evaluate_risk(risk_level, cost, weights, self.risk_estimator)
        if risk_level is None or risk_level == 0.0:
            assert torch.allclose(risk, cost.mean(dim=2))
        assert risk.shape == torch.Size([params.num_control_samples, num_agents])

    @pytest.mark.parametrize("risk_level", [(0.0), (0.5)])
    def test_evaluate_control_sequence(self, params, risk_level):
        num_prediction_samples = 5
        num_agents = 1

        control_sequence = torch.randn(
            1, params.num_steps_future, self.dynamics_model.control_dim
        )
        ego_state_history = to_state(
            torch.randn(1, params.num_steps, params.state_dim), self.dt
        )
        ego_state_target_trajectory = to_state(
            torch.randn(1, params.num_steps_future, params.state_dim), self.dt
        )

        ado_state_future_samples = to_state(
            torch.randn(num_prediction_samples, num_agents, params.num_steps_future, 2),
            params.dt,
        )
        weights = (
            torch.rand(num_prediction_samples, num_agents) / num_prediction_samples
        )
        interaction_risk, tracking_cost = evaluate_control_sequence(
            control_sequence,
            self.dynamics_model,
            ego_state_history,
            ego_state_target_trajectory,
            ado_state_future_samples,
            weights,
            self.interaction_cost_function,
            self.tracking_cost_function,
            risk_level,
            self.risk_estimator,
        )
        assert interaction_risk > 0.0
        assert tracking_cost > 0.0