File size: 9,393 Bytes
5769ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import atexit
import copy
import os
from mmcv import Config
import numpy as np
import pytest
from pytorch_lightning import seed_everything
import torch
import shutil
from torch.utils.data import DataLoader

from risk_biased.scene_dataset.loaders import SceneDataLoaders
from risk_biased.scene_dataset.scene import SceneDataset, RandomSceneParams
from risk_biased.scene_dataset.scene import load_create_dataset


def clean_up_dataset_dir():
    """
    This function is designed to delete the directories
    that might have created even if the test fails early
    by being called on exit.
    """
    current_dir = os.path.dirname(os.path.realpath(__file__))
    dataset_dir0 = os.path.join(current_dir, "scene_dataset_000")
    if os.path.exists(dataset_dir0):
        shutil.rmtree(dataset_dir0)
    dataset_dir1 = os.path.join(current_dir, "scene_dataset_001")
    if os.path.exists(dataset_dir1):
        shutil.rmtree(dataset_dir1)


# atexit.register(clean_up_dataset_dir)


@pytest.fixture(scope="module")
def params():
    seed_everything(0)
    cfg = Config()
    cfg.batch_size = 4
    cfg.time_scene = 5.0
    cfg.dt = 0.1
    cfg.sample_times = [t * cfg.dt for t in range(0, int(cfg.time_scene / cfg.dt))]
    cfg.ego_ref_speed = 14
    cfg.ego_speed_init_low = 4.0
    cfg.ego_speed_init_high = 16.0
    cfg.ego_acceleration_mean_low = -1.5
    cfg.ego_acceleration_mean_high = 1.5
    cfg.ego_acceleration_std = 1.5
    cfg.ego_length = 4
    cfg.ego_width = 1.75
    cfg.fast_speed = 2.0
    cfg.slow_speed = 1.0
    cfg.p_change_pace = 0.2
    cfg.proportion_fast = 0.5
    cfg.perception_noise_std = 0.03

    cfg.state_dim = 2

    cfg.num_steps = 3
    cfg.num_steps_future = len(cfg.sample_times) - cfg.num_steps
    cfg.file_name = "test_scene_data"
    cfg.datasets_sizes = {"train": 100, "val": 10, "test": 30}
    cfg.datasets = list(cfg.datasets_sizes.keys())
    cfg.num_workers = 2
    cfg.dataset_parameters = {
        "dt": cfg.dt,
        "time_scene": cfg.time_scene,
        "sample_times": cfg.sample_times,
        "ego_ref_speed": cfg.ego_ref_speed,
        "ego_speed_init_low": cfg.ego_speed_init_low,
        "ego_speed_init_high": cfg.ego_speed_init_high,
        "ego_acceleration_mean_low": cfg.ego_acceleration_mean_low,
        "ego_acceleration_mean_high": cfg.ego_acceleration_mean_high,
        "ego_acceleration_std": cfg.ego_acceleration_std,
        "fast_speed": cfg.fast_speed,
        "slow_speed": cfg.slow_speed,
        "p_change_pace": cfg.p_change_pace,
        "proportion_fast": cfg.proportion_fast,
        "file_name": cfg.file_name,
        "datasets_sizes": cfg.datasets_sizes,
        "state_dim": cfg.state_dim,
        "num_steps": cfg.num_steps,
        "num_steps_future": cfg.num_steps_future,
        "perception_noise_std": cfg.perception_noise_std,
    }
    return cfg


@pytest.mark.parametrize(
    "n_data, batch_size, sample_times, state_dim",
    [(1024, 128, [0.0, 1.0, 2.0, 3.0, 4.0], 2)],
)
def test_load_data(params, n_data, batch_size, sample_times, state_dim):

    params = copy.deepcopy(params)
    params.batch_size = batch_size
    params.sample_times = sample_times
    scene_params = RandomSceneParams.from_config(params)

    dataset_rand = SceneDataset(n_data, scene_params, pre_fetch=False)
    data_loader_rand = DataLoader(
        dataset_rand, batch_size, collate_fn=dataset_rand.collate_fn, shuffle=False
    )

    dataset_prefetch = SceneDataset(n_data, scene_params, pre_fetch=True)
    data_loader_prefetch = DataLoader(
        dataset_prefetch,
        batch_size,
        collate_fn=dataset_prefetch.collate_fn,
        shuffle=False,
    )

    for i, (batch_rand, batch_prefetch) in enumerate(
        zip(data_loader_rand, data_loader_prefetch)
    ):
        if i == 0:
            first_batch_prefetch = batch_prefetch
            first_batch_rand = batch_rand
        # Check the shape of the data is the expected one
        assert (
            batch_rand.shape
            == batch_prefetch.shape
            == (batch_size, 1, len(sample_times), state_dim)
        )
    # Shuffle false and pre-fetch should loop back to the same batch
    assert torch.allclose(next(iter(data_loader_prefetch)), first_batch_prefetch)
    # Shuffle false but producing random batches should not loop back to the same batch
    assert not torch.allclose(next(iter(data_loader_rand)), first_batch_rand)


class TestDataset:
    @pytest.fixture(autouse=True)
    def setup(self, params):
        clean_up_dataset_dir()
        current_dir = os.path.dirname(os.path.realpath(__file__))
        [data_train, data_val, data_test] = load_create_dataset(params, current_dir)
        self.loaders = SceneDataLoaders(
            params.state_dim,
            params.num_steps,
            params.num_steps_future,
            params.batch_size,
            data_train=data_train,
            data_val=data_val,
            data_test=data_test,
            num_workers=params.num_workers,
        )
        assert os.path.exists(os.path.join(current_dir, "scene_dataset_000"))
        assert not os.path.exists(os.path.join(current_dir, "scene_dataset_001"))
        self.batch = torch.rand(
            params.batch_size,
            params.num_steps + params.num_steps_future,
            params.state_dim,
        )
        self.normalized_batch, self.offset = self.loaders.normalize_trajectory(
            self.batch
        )
        (
            self.normalized_batch_past,
            self.normalized_batch_future,
        ) = self.loaders.split_trajectory(self.normalized_batch)
        # Setup is done but some cleanup must be defined
        yield
        # Remove data directory after use
        dataset_dir = os.path.join(current_dir, "scene_dataset_000")
        shutil.rmtree(dataset_dir)

    def test_setup_datasets(self, params):
        current_dir = os.path.dirname(os.path.realpath(__file__))

        assert os.path.exists(os.path.join(current_dir, "scene_dataset_000"))
        # Should only load from directory that was created, not create a new one
        [train_set, val_set, test_set] = load_create_dataset(
            params, base_dir=current_dir
        )

        assert not os.path.exists(os.path.join(current_dir, "scene_dataset_001"))

        train_path = os.path.join(
            current_dir, "scene_dataset_000", "scene_dataset_train.npy"
        )
        val_path = os.path.join(
            current_dir, "scene_dataset_000", "scene_dataset_val.npy"
        )
        test_path = os.path.join(
            current_dir, "scene_dataset_000", "scene_dataset_test.npy"
        )

        # make sure paths for datasets exist
        assert os.path.exists(train_path)
        assert os.path.exists(val_path)
        assert os.path.exists(test_path)

        # make sure datasets match the specifications made in config
        assert np.load(train_path).shape == (
            2,
            params.datasets_sizes["train"],
            1,
            params.num_steps + params.num_steps_future,
            params.state_dim,
        )
        assert np.load(val_path).shape == (
            2,
            params.datasets_sizes["val"],
            1,
            params.num_steps + params.num_steps_future,
            params.state_dim,
        )
        assert np.load(test_path).shape == (
            2,
            params.datasets_sizes["test"],
            1,
            params.num_steps + params.num_steps_future,
            params.state_dim,
        )

        total_steps = params.num_steps + params.num_steps_future
        assert list(train_set.shape) == [
            2,
            params.datasets_sizes.train,
            1,
            total_steps,
            2,
        ]
        assert list(val_set.shape) == [2, params.datasets_sizes.val, 1, total_steps, 2]
        assert list(test_set.shape) == [
            2,
            params.datasets_sizes.test,
            1,
            total_steps,
            2,
        ]

    def test_split_trajectory(self, params):
        batch_history, batch_future = self.loaders.split_trajectory(self.batch)
        # make sure split_trajectory splits batch into history and future
        assert torch.all(torch.eq(batch_history, self.batch[:, : params.num_steps, :]))
        assert torch.all(torch.eq(batch_future, self.batch[:, params.num_steps :, :]))

    def test_normalize_trajectory(self, params):
        batch_copied = self.batch.detach().clone()
        # make sure batch remains the same
        assert torch.all(torch.eq(batch_copied, self.batch))
        # test normalization of whole batch
        assert torch.allclose(
            self.normalized_batch + self.offset.unsqueeze(1), self.batch
        )
        assert torch.allclose(
            self.batch - self.offset.unsqueeze(1), self.normalized_batch
        )

        batch_past, batch_fut = self.loaders.split_trajectory(self.batch)
        # test normalization of history
        assert torch.allclose(
            self.normalized_batch_past + self.offset.unsqueeze(1), batch_past
        )

    def test_unnormalize_trajectory(self, params):
        batch_future_test = self.loaders.unnormalize_trajectory(
            self.normalized_batch_future, self.offset
        )
        # test unnormalization
        assert torch.allclose(
            self.normalized_batch_future + self.offset.unsqueeze(1), batch_future_test
        )