Spaces:
Running
Running
File size: 21,577 Bytes
5769ee4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
import concurrent.futures
from concurrent.futures import ProcessPoolExecutor
import math
import os
import fire
import numpy as np
import pickle
import tensorflow as tf
from tqdm import tqdm
from waymo_open_dataset.protos import scenario_pb2
def scalar_to_one_hot(length, index, has_zero=False):
if has_zero:
offset = 1
else:
offset = 0
assert 0 <= index < length + offset
if index + 1 - offset > 0:
one_hot_type = np.eye(length)[index - offset]
else:
one_hot_type = np.zeros(length)
return one_hot_type
def group_tracks(tracks):
object_types = {
"TYPE_UNSET": 0,
"TYPE_VEHICLE": 1,
"TYPE_PEDESTRIAN": 2,
"TYPE_CYCLIST": 3,
"TYPE_OTHER": 4,
}
state_size = 11
traj = np.zeros((len(tracks), len(tracks[0].states), state_size))
mask_traj = np.zeros((len(tracks), len(tracks[0].states)), dtype=bool)
traj_type = np.zeros((len(tracks), len(object_types) - 1))
id_to_idx = {}
for i_track, track in enumerate(tracks):
traj_type[i_track, :] = scalar_to_one_hot(
len(object_types) - 1, track.object_type, has_zero=True
)
id_to_idx[track.id] = i_track
for i_time, state in enumerate(track.states):
if state.valid:
traj[i_track, i_time, 0] = state.center_x
traj[i_track, i_time, 1] = state.center_y
traj[i_track, i_time, 2] = state.heading
traj[i_track, i_time, 3] = state.velocity_x
traj[i_track, i_time, 4] = state.velocity_y
traj[i_track, i_time, 5] = state.width
traj[i_track, i_time, 6] = state.length
traj[i_track, i_time, 7:11] = traj_type[i_track, :]
mask_traj[i_track, i_time] = state.center_x != 0 or state.center_y != 0
else:
mask_traj[i_track, i_time] = False
# Remove trajectories that are masked for the whole time
mask_any_time = mask_traj.any(-1)
to_delete = []
for key, value in id_to_idx.items():
if not mask_any_time[value]:
to_delete.append(key)
else:
id_to_idx[key] = np.sum(mask_any_time[:value])
for key in to_delete:
del id_to_idx[key]
traj = traj[mask_any_time]
traj_type = traj_type[mask_any_time]
mask_traj = mask_traj[mask_any_time]
# traj:(n_agents, seq_time, features), mask:(n_agents, seq_time), traj_type:(n_agents, features)
assert (traj[..., :2][mask_traj] != 0).any(-1).all()
return traj, mask_traj, traj_type, id_to_idx
def filter_tracks(
pos,
trajs,
mask_trajs,
trajs_type,
to_predict,
id_to_idx,
mask_keep,
max_moving_distance,
max_static_distance,
):
distances2 = ((trajs[:, :, :2] - pos[None, None, :]) ** 2).sum(-1).min(1)
first_non_0_pos = np.take_along_axis(
trajs, np.argmax(mask_trajs, 1)[:, None, None], axis=1
)
is_moving = (
np.abs((trajs[:, :, :2] - first_non_0_pos[:, 0:1, :2]) * mask_trajs[:, :, None])
.sum(1)
.sum(1)
> 1
)
filtered = np.zeros_like(distances2, dtype=bool)
filtered[is_moving] = distances2[is_moving] < max_moving_distance**2
filtered[np.logical_not(is_moving)] = (
distances2[np.logical_not(is_moving)] < max_static_distance**2
)
filtered = np.logical_or(filtered, mask_keep)
# Filter out trajectories
to_delete = []
idx_to_id = {}
for key, value in id_to_idx.items():
if not filtered[value]:
to_delete.append(key)
else:
new_value = np.sum(filtered[:value])
idx_to_id[new_value] = key
id_to_idx[key] = new_value
for key in to_delete:
del id_to_idx[key]
trajs = trajs[filtered]
trajs_type = trajs_type[filtered]
mask_trajs = mask_trajs[filtered]
to_predict = to_predict[filtered]
if mask_keep.all():
return trajs, mask_trajs, trajs_type, to_predict, id_to_idx
# Sort entries from closest to furthest to input pos
distances2 = distances2[filtered]
distance_sort = np.argsort(distances2)
copy_trajs = trajs.copy()
copy_mask_trajs = mask_trajs.copy()
copy_trajs_type = trajs_type.copy()
copy_to_predict = to_predict.copy()
skip = np.argmin(mask_keep)
assert skip > 1
offset = skip
for i, idx in enumerate(distance_sort[skip:]):
if idx > skip:
ii = i + offset
trajs[ii] = copy_trajs[idx]
trajs_type[ii] = copy_trajs_type[idx]
mask_trajs[ii] = copy_mask_trajs[idx]
to_predict[ii] = copy_to_predict[idx]
id_to_idx[idx_to_id[idx]] = ii
else:
offset -= 1
assert (trajs[..., :2][mask_trajs] != 0).any(-1).all()
return trajs, mask_trajs, trajs_type, to_predict, id_to_idx
def cut_lane(lane, pos, max_len):
center_idx = np.argmin(((lane - pos[None, :]) ** 2).sum(-1))
start = max(0, center_idx - max_len // 2)
return lane[start : start + max_len, :]
def group_lanes(map, center, max_lane_len, max_lane_distance):
all_objects = []
all_types = []
max_len = 0
id_to_idx = {}
stride = 2
max_lane_len = max_lane_len * stride
for object in map:
# Type one_hot encoding is as follows: 0: lane, 1: stop_sign, 2: cross_walk, 3: speed_bump
lane = object.lane.polyline
is_cut_lane = len(lane) > max_lane_len
len_lane = min(len(lane), max_lane_len)
len_cross_walk = len(object.crosswalk.polygon)
len_speed_bump = len(object.speed_bump.polygon)
num_obj_types = 4
max_len = max(max_len, len_lane)
max_len = max(max_len, len_cross_walk)
max_len = max(max_len, len_speed_bump)
if len_lane > 0:
current_lane = np.zeros((len(lane), 2))
for i_point, cw in enumerate(lane):
current_lane[i_point, 0] = cw.x
current_lane[i_point, 1] = cw.y
if is_cut_lane:
current_lane = cut_lane(current_lane, center, max_lane_len)
min_distance2 = np.min(((current_lane - center[None, :]) ** 2).sum(-1))
if min_distance2 < max_lane_distance**2:
id_to_idx[object.id] = len(all_objects)
all_objects.append(current_lane)
all_types.append(scalar_to_one_hot(num_obj_types, 0))
# elif len_cross_walk > 0:
# current_cross_walk = np.zeros((len_cross_walk, 2))
# for i_point, cw in enumerate(object.crosswalk.polygon):
# current_cross_walk[i_point, 0] = cw.x
# current_cross_walk[i_point, 1] = cw.y
# all_objects.append(current_cross_walk)
# all_types.append(scalar_to_one_hot(num_obj_types, 2))
# elif len_speed_bump > 0:
# current_speed_bump = np.zeros((len_speed_bump, 2))
# for i_point, cw in enumerate(object.speed_bump.polygon):
# current_speed_bump[i_point, 0] = cw.x
# current_speed_bump[i_point, 1] = cw.y
# all_objects.append(current_speed_bump)
# all_types.append(scalar_to_one_hot(num_obj_types, 3))
# elif not (object.stop_sign.position.x == 0 and object.stop_sign.position.y == 0):
# all_objects.append([np.array([object.stop_sign.position.x, object.stop_sign.position.y])])
# all_types.append(scalar_to_one_hot(num_obj_types, 1))
object_array = np.zeros((len(all_objects), (max_len + 1) // stride, 2))
mask_object_array = np.zeros(
(len(all_objects), (max_len + 1) // stride), dtype=bool
)
object_types_array = np.zeros((len(all_types), num_obj_types))
for i_object, object in enumerate(all_objects):
len_object = (len(object) + 1) // stride
object_array[i_object, :len_object, :] = object[::2]
mask_object_array[i_object, :len_object] = True
object_types_array[i_object] = all_types[i_object]
# for i, lane in enumerate(object_array):
# plt.plot(lane[mask_object_array[i, :], 0], lane[mask_object_array[i, :], 1], alpha=0.3)
idx_to_id = {value: key for key, value in id_to_idx.items()}
# Sort entries from closest to furthest to input center
distances2 = np.min(((object_array - center[None, None, :]) ** 2).sum(-1), 1)
distance_sort = np.argsort(distances2)
copy_object = object_array.copy()
copy_mask_object = mask_object_array.copy()
copy_type = object_types_array.copy()
for i, idx in enumerate(distance_sort):
object_array[i] = copy_object[idx]
mask_object_array[i] = copy_mask_object[idx]
object_types_array[i] = copy_type[idx]
id_to_idx[idx_to_id[idx]] = i
return object_array, mask_object_array, object_types_array, id_to_idx
def group_light_signals(light_signals, id_to_idx, n_map_objects):
state_to_idx = {
"TRAFFIC_LIGHT_STATE_UNKNOWN": 0,
"TRAFFIC_LIGHT_STATE_ARROW_STOP": 1,
"TRAFFIC_LIGHT_STATE_ARROW_CAUTION": 2,
"TRAFFIC_LIGHT_STATE_ARROW_GO": 3,
"TRAFFIC_LIGHT_STATE_STOP": 4,
"TRAFFIC_LIGHT_STATE_CAUTION": 5,
"TRAFFIC_LIGHT_STATE_GO": 6,
"TRAFFIC_LIGHT_STATE_FLASHING_STOP": 7,
"TRAFFIC_LIGHT_STATE_FLASHING_CAUTION": 8,
}
len_time = len(light_signals)
all_lanes_states = np.zeros((n_map_objects, len_time, len(state_to_idx) - 1))
for t, lanes_states in enumerate(light_signals):
for lane in lanes_states.lane_states:
if lane.lane in id_to_idx.keys():
all_lanes_states[id_to_idx[lane.lane], t, :] = scalar_to_one_hot(
len(state_to_idx) - 1, lane.state, True
)
# (n_objects, seq_time, features)
return all_lanes_states
def normalize_all(traj, map, pos, angle):
c = math.cos(angle)
s = math.sin(angle)
rotation_mat = np.array([[c, s], [-s, c]])
traj_clone = traj.clone()
traj_clone[..., :2] = (
traj_clone[..., :2] - pos.reshape(([1] * (traj.ndim - 1)) + [2])
) @ rotation_mat
traj_clone[..., 2] = (traj_clone[..., 2] + angle + np.pi) % (2 * np.pi) - np.pi
if traj.shape[-1] >= 5:
traj_clone[..., 3:5] = traj_clone[..., 3:5] @ rotation_mat
map_clone = (map.clone() - pos.reshape(([1] * (map.ndim - 1)) + [2])) @ rotation_mat
return traj_clone, map_clone
def fill_gaps(trajs, mask_in):
"""
If trajectories are partially observed with gaps (observed then not then observed again), fill the gaps with interpolations.
Args:
trajs: size (n_agents, time, features) features are organized as [x, y, angle, vx, vy, other_features ]
"""
mask = mask_in.copy()
first_non_zeros = np.argmax(mask, 1)
last_non_zeros = mask.shape[1] - np.argmax(np.flip(mask, 1), 1)
has_gaps = np.logical_and(
last_non_zeros - first_non_zeros > np.maximum(mask.sum(1), 1), mask.sum(1) > 1
)
if not has_gaps.any():
# No gap to fill, returning the input
return trajs
# iterate over agents
for i in range(trajs.shape[0]):
if has_gaps[i]:
left = first_non_zeros[i]
right = first_non_zeros[i]
for t in range(first_non_zeros[i], last_non_zeros[i]):
if mask[i, t] and left == right:
left += 1
elif mask[i, t]:
break
else:
mask[i, t] = True
right += 1
# Linear filling for positions:
trajs[i, left:right, :2] = (np.arange(right - left) / (right - left))[
:, None
] * (trajs[i, right, :2] - trajs[i, left - 1, :2])[None, :] + trajs[
i, left - 1 : left, :2
]
# Linear filling for velocities and the rest:
trajs[i, left:right, 3:] = (np.arange(right - left) / (right - left))[
:, None
] * (trajs[i, right, 3:] - trajs[i, left - 1, 3:])[None, :] + trajs[
i, left - 1 : left, 3:
]
# Linear filling for angles (periodicity doesn't allow direct interpolation):
cos_traj = np.cos(trajs[i, left - 1 : right + 1, 2])
sin_traj = np.sin(trajs[i, left - 1 : right + 1, 2])
cos_traj = (np.arange(right - left) / (right - left)) * (
cos_traj[-1] - cos_traj[0]
) + cos_traj[0]
sin_traj = (np.arange(right - left) / (right - left)) * (
sin_traj[-1] - sin_traj[0]
) + sin_traj[0]
trajs[i, left:right, 2] = np.arctan2(sin_traj, cos_traj)
# Only the first gap was filled, recursive call to complete others
return fill_gaps(trajs, mask)
def group_scenario(scenario):
ids_of_interest = list(set(scenario.objects_of_interest))
# Only gather scenario with a pair of interacting vehicles
if len(ids_of_interest) != 2:
return None
traj, mask_traj, traj_type, id_to_idx = group_tracks(scenario.tracks)
assert (traj[..., :2][mask_traj] != 0).any(-1).all()
to_predict = np.zeros(traj.shape[0], dtype=bool)
for idx in scenario.tracks_to_predict:
to_predict[idx.track_index] = True
# # Set ego as the first agent in the list of trajectories
# index_ego = scenario.sdc_track_index
# if index_ego != 0:
# for key, value in id_to_idx.items():
# if value == 0:
# id_0 = key
# traj[[0, index_ego]] = traj[[index_ego, 0]]
# mask_traj[[0, index_ego]] = mask_traj[[index_ego, 0]]
# traj_type[[0, index_ego]] = traj_type[[index_ego, 0]]
# to_predict[[0, index_ego]] = to_predict[[index_ego, 0]]
# id_to_idx[id_0] = index_ego
# id_to_idx[scenario.sdc_track_index] = 0
# Set the agents of interest as the first agents in the list of trajectories
for key, value in id_to_idx.items():
if value == 0:
id_0 = key
elif value == 1:
id_1 = key
indices_of_interest = sorted(
[id_to_idx[ids_of_interest[0]], id_to_idx[ids_of_interest[1]]]
)
traj[[0, indices_of_interest[0]]] = traj[
[
indices_of_interest[0],
0,
]
]
mask_traj[[0, indices_of_interest[0]]] = mask_traj[
[
indices_of_interest[0],
0,
]
]
traj_type[[0, indices_of_interest[0]]] = traj_type[
[
indices_of_interest[0],
0,
]
]
to_predict[[0, indices_of_interest[0]]] = to_predict[
[
indices_of_interest[0],
0,
]
]
traj[[1, indices_of_interest[1]]] = traj[[indices_of_interest[1], 1]]
mask_traj[[1, indices_of_interest[1]]] = mask_traj[[indices_of_interest[1], 1]]
traj_type[[1, indices_of_interest[1]]] = traj_type[[indices_of_interest[1], 1]]
to_predict[[1, indices_of_interest[1]]] = to_predict[[indices_of_interest[1], 1]]
id_to_idx[id_0] = id_to_idx[ids_of_interest[0]]
id_to_idx[ids_of_interest[0]] = 0
id_to_idx[id_1] = id_to_idx[ids_of_interest[1]]
id_to_idx[ids_of_interest[1]] = 1
assert (traj[..., :2][mask_traj] != 0).any(-1).all()
# ego_current_state = scenario.tracks[scenario.sdc_track_index].states[scenario.current_time_index]
# angle = ego_current_state.heading
traj = fill_gaps(traj, mask_traj)
pos = traj[0, scenario.current_time_index, :2]
angle = traj[0, scenario.current_time_index, 2]
# mask_agent_of_interest = np.zeros((traj.shape[0]), dtype=bool)
# idx_of_interest = [id_to_idx[id] for id in scenario.objects_of_interest]
# mask_agent_of_interest[idx_of_interest] = True
traj, mask_traj, traj_type, to_predict, id_to_idx = filter_tracks(
pos,
traj,
mask_traj,
traj_type,
to_predict,
id_to_idx,
mask_keep=to_predict,
max_moving_distance=50,
max_static_distance=30,
)
assert (traj[..., :2][mask_traj] != 0).any(-1).all()
if traj.shape[0] > 100:
print(traj.shape[0])
map, mask_map, map_type, map_id_to_idx = group_lanes(
scenario.map_features, pos, max_lane_len=50, max_lane_distance=50
)
lane_states = group_light_signals(
scenario.dynamic_map_states, map_id_to_idx, map.shape[0]
)
traj, map = normalize_all(traj, map, pos, -angle)
assert (
(
traj[0, scenario.current_time_index + 1 :, :2][
mask_traj[0, scenario.current_time_index + 1 :]
]
!= 0
)
.any(-1)
.all()
)
assert (
(
traj[0, : scenario.current_time_index, :2][
mask_traj[0, : scenario.current_time_index]
]
!= 0
)
.any(-1)
.all()
)
assert (traj[1:, :, :2][mask_traj[1:, :]] != 0).any(-1).all()
len_pred = traj.shape[1] - scenario.current_time_index - 1
traj = traj.transpose((1, 0, 2))
mask_traj = mask_traj.transpose((1, 0))
map = map.transpose((1, 0, 2))
mask_map = mask_map.transpose((1, 0))
assert (
(
traj[scenario.current_time_index + 1 :, 0, :2][
mask_traj[scenario.current_time_index + 1 :, 0]
]
!= 0
)
.any(-1)
.all()
)
assert (
(
traj[: scenario.current_time_index, 0, :2][
mask_traj[: scenario.current_time_index, 0]
]
!= 0
)
.any(-1)
.all()
)
assert (traj[:, 1:, :2][mask_traj[:, 1:]] != 0).any(-1).all()
# Mask futures for trajectories that are not to be predicted
traj = traj * mask_traj[:, :, None]
# to_predict[0] = True
# to_predict[1] = True
# mask_traj[scenario.current_time_index+1:, np.logical_not(to_predict)] = 0
mask_to_predict = mask_traj.copy()
mask_to_predict[:, np.logical_not(to_predict)] = False
assert (
(
traj[scenario.current_time_index + 1 :, 0, :2][
mask_to_predict[scenario.current_time_index + 1 :, 0]
]
!= 0
)
.any(-1)
.all()
)
assert (
(
traj[: scenario.current_time_index, 0, :2][
mask_to_predict[: scenario.current_time_index, 0]
]
!= 0
)
.any(-1)
.all()
)
assert (traj[:, 1:, :2][mask_to_predict[:, 1:]] != 0).any(-1).all()
return {
"traj": traj,
"mask_traj": mask_traj,
"mask_to_predict": mask_to_predict,
"lanes": map,
"lane_states": lane_states,
"mask_lanes": mask_map,
"len_pred": len_pred,
"mean_pos": pos,
}
def preprocess_scenario(data, output_dir):
scenario = scenario_pb2.Scenario()
scenario.ParseFromString(data.numpy())
scenario_id = scenario.scenario_id
scenario = group_scenario(scenario)
if scenario is not None:
with open(os.path.join(output_dir, scenario_id), "wb") as handle:
pickle.dump(scenario, handle)
def preprocess_scenarios(scenario_dir, output_dir, debug_size=None, num_parallel=8):
"""Preprocesses waymo motion data in scenario file format.
Args:
scenario_dir: Directory containing scenario files.
output_dir: Directory in which to output preprocessed samples
debug_size: If provided, limit to this number of output samples.
This is the _max_ number of samples, but fewer may result.
num_parallel: Number of processes to run in parallel.
Recommend to set this to number of cores - 1.
"""
assert os.path.exists(scenario_dir)
filenames = os.listdir(scenario_dir)
print(f"Saving files in {output_dir}")
filepaths = [os.path.join(scenario_dir, f) for f in filenames]
dataset = tf.data.TFRecordDataset(filepaths)
os.makedirs(output_dir, exist_ok=True)
pool = ProcessPoolExecutor(num_parallel)
futures = []
for i, data in enumerate(tqdm(dataset)):
future = pool.submit(preprocess_scenario, data=data, output_dir=output_dir)
# future = preprocess_scenario(data=data, output_dir=output_dir)
futures.append(future)
if debug_size is not None and i >= debug_size:
break
concurrent.futures.wait(futures)
pool.shutdown()
if __name__ == "__main__":
"""
The way this works is it provides a command line interface to the function
where you just pass whatever arguments the function takes to the script.
You can get a help message with:
$ python scripts/interaction_utils/generate_dataset_waymo.py -h
An example you might call with:
$ python scripts/interaction_utils/generate_dataset_waymo.py \
/path/to/scenarios/training/ /path/to/output/training --debug_size=1000 --num_parallel=48
"""
fire.Fire(preprocess_scenarios)
|