File size: 4,131 Bytes
5769ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os

from mmcv import Config
import matplotlib.pyplot as plt
import numpy as np
from pytorch_lightning.utilities.seed import seed_everything
import torch

from risk_biased.scene_dataset.scene import RandomScene, RandomSceneParams
from risk_biased.scene_dataset.scene_plotter import ScenePlotter
from risk_biased.utils.cost import (
    DistanceCostTorch,
    DistanceCostParams,
    TTCCostTorch,
    TTCCostParams,
)
from risk_biased.utils.load_model import load_from_config

if __name__ == "__main__":
    working_dir = os.path.dirname(os.path.realpath(__file__))
    config_path = os.path.join(
        working_dir, "..", "..", "risk_biased", "config", "learning_config.py"
    )
    config = Config.fromfile(config_path)
    model, loaders, config = load_from_config(config)
    if config.seed is not None:
        seed_everything(config.seed)

    is_torch = True
    n_scenes = 100
    risk_level = 0
    fig, ax = plt.subplots()

    scene_params = RandomSceneParams.from_config(config)
    scene_params.batch_size = n_scenes
    test_scene = RandomScene(
        scene_params,
        is_torch=is_torch,
    )
    plotter = ScenePlotter(test_scene, ax=ax)
    num_steps = config.num_steps
    time = config.sample_times[config.num_steps - 1]

    dist_cost = DistanceCostTorch(DistanceCostParams.from_config(config))
    ttc_cost = TTCCostTorch(TTCCostParams.from_config(config))

    len_traj = int(config.time_scene / test_scene.dt)
    ped_trajs = test_scene.get_pedestrians_trajectories()[
        :, :, [int(round(t / config.dt)) for t in config.sample_times]
    ]

    ego_traj = test_scene.get_ego_ref_trajectory(config.sample_times)

    batch_size = ped_trajs.shape[0]
    normalized_trajs, offset = loaders.normalize_trajectory(ped_trajs)
    x = normalized_trajs[:, :, : config.num_steps]
    ego_history = ego_traj[:, :, : config.num_steps].repeat(batch_size, 1, 1, 1)
    ego_future = ego_traj[:, :, config.num_steps :].repeat(batch_size, 1, 1, 1)
    mask_x = torch.ones_like(x[..., 0])
    map = torch.empty(ego_history.shape[0], 0, 0, 2, device=mask_x.device)
    mask_map = torch.empty(ego_history.shape[0], 0, 0, device=mask_x.device)
    # ego_conditioning = model.get_ego_conditioning(ego_history, ego_future)
    pred = (
        model.predict_step(
            (x, mask_x, map, mask_map, offset, ego_history, ego_future),
            0,
            risk_level=torch.ones(n_scenes, 1, device=x.device) * risk_level,
        )
        .cpu()
        .detach()
        .numpy()
    )

    text_length = 10
    text_height = 1

    ind = int(np.random.rand() * n_scenes)
    agent_selected = 0

    plotter.draw_scene(ind, time=time)
    plotter.draw_trajectory(
        ped_trajs[ind, agent_selected, config.num_steps :], color="g"
    )
    plotter.draw_trajectory(ped_trajs[ind, agent_selected, : config.num_steps])
    plotter.draw_trajectory(pred[ind, agent_selected], color="r")

    ped_velocities = test_scene.get_pedestrians_velocities().repeat(
        (1, 1, ped_trajs.shape[2], 1)
    )
    cost, (ttc, dist) = ttc_cost(
        ego_traj[:, :, config.num_steps :],
        ped_trajs[:, :, config.num_steps :],
        test_scene.get_ego_ref_velocity(),
        ped_velocities[:, :, config.num_steps :],
    )
    print(f"Equation TTC: {ttc[ind, agent_selected, num_steps]:.2f}")
    print(f"Distance at TTC {dist[ind, agent_selected, num_steps]:.2f}")
    plt.text(
        test_scene.road_length - text_length,
        test_scene.road_width - 2 * text_height,
        f"TTC cost: {cost[ind, agent_selected]:.2f}",
    )
    cost, dist = dist_cost(
        ego_traj[:, :, config.num_steps :], ped_trajs[:, :, config.num_steps :]
    )
    cost = cost[ind, agent_selected]
    if is_torch:
        print(
            f"Min distance {torch.sqrt(torch.min(dist, 2)[0][ind, agent_selected]):.2f}"
        )
    else:
        print(f"Min distance {np.sqrt(np.min(dist, 2)[ind, agent_selected]):.2f}")
    ax.text(
        test_scene.road_length - text_length,
        test_scene.road_width - 3 * text_height,
        f"Distance cost: {cost:.2f}",
    )
    plt.tight_layout()
    plt.show()