File size: 9,832 Bytes
5769ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
from typing import Tuple

import numpy as np
import torch
from torch.utils.data import DataLoader, TensorDataset


class SceneDataLoaders:
    """
    This class loads a scene dataset and pre-process it (normalization, unnormalization)

    Args:
        state_dim : dimension of the observed state (2 for x,y position observation)
        num_steps : number of observed steps
        num_steps_future : number of steps in the future
        batch_size: set data loader with this batch size
        data_train: training dataset
        data_val: validation dataset
        data_test: test dataset
        num_workers: number of workers to use for data loading
    """

    def __init__(
        self,
        state_dim: int,
        num_steps: int,
        num_steps_future: int,
        batch_size: int,
        data_train: torch.Tensor,
        data_val: torch.Tensor,
        data_test: torch.Tensor,
        num_workers: int = 0,
    ):
        self._batch_size = batch_size
        self._num_workers = num_workers
        self._state_dim = state_dim
        self._num_steps = num_steps
        self._num_steps_future = num_steps_future

        self._setup_datasets(data_train, data_val, data_test)

    def train_dataloader(self, shuffle=True, drop_last=True) -> DataLoader:
        """Setup and return training DataLoader

        Returns:
            DataLoader: training DataLoader
        """
        data_size = self._data_train_past.shape[0]
        # This is a didactic data loader that only defines minimalistic inputs.
        # This dataloader adds some empty tensors and ones to match the expected format with masks and map information.
        train_loader = DataLoader(
            dataset=TensorDataset(
                self._data_train_past,
                torch.ones_like(self._data_train_past[..., 0]),  # Mask past
                self._data_train_fut,
                torch.ones_like(self._data_train_fut[..., 0]),  # Mask fut
                torch.ones_like(self._data_train_fut[..., 0]),  # Mask loss
                torch.empty(
                    data_size, 1, 0, 0, device=self._data_train_past.device
                ),  # Map
                torch.empty(
                    data_size, 1, 0, device=self._data_train_past.device
                ),  # Mask map
                self._offset_train,
                self._data_train_ego_past,
                self._data_train_ego_fut,
            ),
            batch_size=self._batch_size,
            shuffle=shuffle,
            drop_last=drop_last,
            num_workers=self._num_workers,
        )
        return train_loader

    def val_dataloader(self, shuffle=False, drop_last=False) -> DataLoader:
        """Setup and return validation DataLoader

        Returns:
            DataLoader: validation DataLoader
        """
        data_size = self._data_val_past.shape[0]
        # This is a didactic data loader that only defines minimalistic inputs.
        # This dataloader adds some empty tensors and ones to match the expected format with masks and map information.
        val_loader = DataLoader(
            dataset=TensorDataset(
                self._data_val_past,
                torch.ones_like(self._data_val_past[..., 0]),  # Mask past
                self._data_val_fut,
                torch.ones_like(self._data_val_fut[..., 0]),  # Mask fut
                torch.ones_like(self._data_val_fut[..., 0]),  # Mask loss
                torch.zeros(
                    data_size, 1, 0, 0, device=self._data_val_past.device
                ),  # Map
                torch.ones(
                    data_size, 1, 0, device=self._data_val_past.device
                ),  # Mask map
                self._offset_val,
                self._data_val_ego_past,
                self._data_val_ego_fut,
            ),
            batch_size=self._batch_size,
            shuffle=shuffle,
            drop_last=drop_last,
            num_workers=self._num_workers,
        )
        return val_loader

    def test_dataloader(self) -> DataLoader:
        """Setup and return test DataLoader

        Returns:
            DataLoader: test DataLoader
        """
        data_size = self._data_test_past.shape[0]
        # This is a didactic data loader that only defines minimalistic inputs.
        # This dataloader adds some empty tensors and ones to match the expected format with masks and map information.
        test_loader = DataLoader(
            dataset=TensorDataset(
                self._data_test_past,
                torch.ones_like(self._data_test_past[..., 0]),  # Mask
                torch.zeros(
                    data_size, 0, 1, 0, device=self._data_test_past.device
                ),  # Map
                torch.ones(
                    data_size, 0, 1, device=self._data_test_past.device
                ),  # Mask map
                self._offset_test,
                self._data_test_ego_past,
                self._data_test_ego_fut,
            ),
            batch_size=self._batch_size,
            shuffle=False,
            num_workers=self._num_workers,
        )
        return test_loader

    def _setup_datasets(
        self, data_train: torch.Tensor, data_val: torch.Tensor, data_test: torch.Tensor
    ):
        """Setup datasets: normalize and split into past future
        Args:
            data_train: training dataset
            data_val: validation dataset
            data_test: test dataset
        """
        data_train, data_train_ego = data_train[0], data_train[1]
        data_val, data_val_ego = data_val[0], data_val[1]
        data_test, data_test_ego = data_test[0], data_test[1]

        data_train, self._offset_train = self.normalize_trajectory(data_train)
        data_val, self._offset_val = self.normalize_trajectory(data_val)
        data_test, self._offset_test = self.normalize_trajectory(data_test)
        # This is a didactic data loader that only defines minimalistic inputs.
        # An extra dimension is added to account for the number of agents in the scene.
        # In this minimal input there is only one but the model using the data expects any number of agents.
        self._data_train_past, self._data_train_fut = self.split_trajectory(data_train)
        self._data_val_past, self._data_val_fut = self.split_trajectory(data_val)
        self._data_test_past, self._data_test_fut = self.split_trajectory(data_test)

        self._data_train_ego_past, self._data_train_ego_fut = self.split_trajectory(
            data_train_ego
        )
        self._data_val_ego_past, self._data_val_ego_fut = self.split_trajectory(
            data_val_ego
        )
        self._data_test_ego_past, self._data_test_ego_fut = self.split_trajectory(
            data_test_ego
        )

    def split_trajectory(
        self, input: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Split input trajectory into history and future

        Args:
            input : (batch_size, (n_agents), num_steps + num_steps_future, state_dim) tensor of
            entire trajectory [x, y]

        Returns:
            Tuple of history and future trajectories
        """
        assert (
            input.shape[-2] == self._num_steps + self._num_steps_future
        ), "trajectory length ({}) does not match the expected length".format(
            input.shape[-2]
        )
        assert (
            input.shape[-1] == self._state_dim
        ), "state dimension ({}) does no match the expected dimension".format(
            input.shape[-1]
        )

        input_history, input_future = torch.split(
            input, [self._num_steps, self._num_steps_future], dim=-2
        )
        return input_history, input_future

    @staticmethod
    def normalize_trajectory(input: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """Normalize input trajectory by subtracting initial state

        Args:
            input : (some_shape, n_agents, num_steps + num_steps_future, state_dim) tensor of
            entire trajectory [x, y], or (some_shape, num_steps, state_dim) tensor of history x

        Returns:
            Tuple of (normalized_trajectory, offset), where
            normalized_trajectory has the same dimension as the input and offset is a
            (some_shape, state_dim) tensor corresponding to the initial state
        """
        offset = input[..., 0, :].clone()

        return input - offset.unsqueeze(-2), offset

    @staticmethod
    def unnormalize_trajectory(
        input: torch.Tensor, offset: torch.Tensor
    ) -> torch.Tensor:
        """Unnormalize trajectory by adding offset to input

        Args:
            input : (some_shape, (n_sample), num_steps_future, state_dim) tensor of future
            trajectory y
            offset : (some_shape, 2 or 4 or 5) tensor of offset to add to y

        Returns:
            Unnormalized trajectory that has the same size as input
        """
        offset_dim = offset.shape[-1]
        assert input.shape[-1] >= offset_dim
        input_clone = input.clone()
        if offset.ndim == 2:
            batch_size, _ = offset.shape
            assert input_clone.shape[0] == batch_size

            input_clone[..., :offset_dim] = input_clone[
                ..., :offset_dim
            ] + offset.reshape(
                [batch_size, *([1] * (input_clone.ndim - 2)), offset_dim]
            )
        elif offset.ndim == 3:
            batch_size, num_agents, _ = offset.shape
            assert input_clone.shape[0] == batch_size
            assert input_clone.shape[1] == num_agents

            input_clone[..., :offset_dim] = input_clone[
                ..., :offset_dim
            ] + offset.reshape(
                [batch_size, num_agents, *([1] * (input_clone.ndim - 3)), offset_dim]
            )

        return input_clone