File size: 17,693 Bytes
5769ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
from dataclasses import dataclass
from typing import Callable, Dict, List, Optional, Tuple

from mmcv import Config
import numpy as np
import torch

from risk_biased.mpc_planner.dynamics import PositionVelocityDoubleIntegrator
from risk_biased.mpc_planner.planner_cost import TrackingCost
from risk_biased.predictors.biased_predictor import LitTrajectoryPredictor
from risk_biased.utils.cost import BaseCostTorch
from risk_biased.utils.planner_utils import (
    AbstractState,
    to_state,
    evaluate_risk,
    get_interaction_cost,
)
from risk_biased.utils.risk import AbstractMonteCarloRiskEstimator


@dataclass
class CrossEntropySolverParams:
    """Dataclass for Cross Entropy Solver Parameters

    Args:
        num_control_samples: number of Monte Carlo samples for control input
        num_elite: number of elite samples
        iter_max: maximum iteration number
        smoothing_factor: smoothing factor in (0, 1) used to update the mean and the std of the
          control input distribution for the next iteration. If 0, the updated distribution is
          independent of the previous iteration. If 1, the updated distribution is the same as the
          previous iteration.
        mean_warm_start: internally saves control_input_mean of the last iteration of the current
          solve, so that control_input_mean will be warm-started in the next solve
    """

    num_control_samples: int
    num_elite: int
    iter_max: int
    smoothing_factor: float
    mean_warm_start: bool
    dt: float

    @staticmethod
    def from_config(cfg: Config):
        return CrossEntropySolverParams(
            cfg.num_control_samples,
            cfg.num_elite,
            cfg.iter_max,
            cfg.smoothing_factor,
            cfg.mean_warm_start,
            cfg.dt,
        )


class CrossEntropySolver:
    """Cross Entropy Solver for MPC Planner

    Args:
        params: CrossEntropySolverParams object
        dynamics_model: dynamics model for control
        control_input_mean: (num_agents, num_steps_future, control_dim) tensor of control input mean
        control_input_std: (num_agents, num_steps_future, control_dim) tensor of control input std
        tracking_cost_function: deterministic tracking cost that does not involve ado
        intraction_cost_function: interaction cost function between ego and (stochastic) ado
        risk_estimator (optional): Monte Carlo risk estimator for risk computation. If None,
          risk-neutral expecation is used for selectoin of elites. Defaults to None.
    """

    def __init__(
        self,
        params: CrossEntropySolverParams,
        dynamics_model: PositionVelocityDoubleIntegrator,
        control_input_mean: torch.Tensor,
        control_input_std: torch.Tensor,
        tracking_cost_function: TrackingCost,
        interaction_cost_function: BaseCostTorch,
        risk_estimator: Optional[AbstractMonteCarloRiskEstimator] = None,
    ) -> None:
        self.params = params

        self.control_input_mean_init = control_input_mean.detach().clone()
        self.control_input_std_init = control_input_std.detach().clone()
        assert (
            self.control_input_mean_init.shape == self.control_input_std_init.shape
        ), "control input mean and std must have the same size"
        assert (
            self.control_input_mean_init.shape[-1] == dynamics_model.control_dim
        ), f"control dimension must be {dynamics_model.control_dim}"

        self.dynamics_model = dynamics_model
        self.tracking_cost = tracking_cost_function
        self.interaction_cost = interaction_cost_function
        self.risk_estimator = risk_estimator

        self._iter_current = None
        self._control_input_mean = None
        self._control_input_std = None

        self._latest_ado_position_future_samples = None

        self.reset()

    def reset(self) -> None:
        """Resets the solver's internal state"""
        self._iter_current = 0
        self._control_input_mean = self.control_input_mean_init.clone()
        self._control_input_std = self.control_input_std_init.clone()
        self._latest_ado_position_future_samples = None

    def step(
        self,
        ego_state_history: AbstractState,
        ego_state_target_trajectory: AbstractState,
        ado_state_future_samples: AbstractState,
        weights: torch.Tensor,
        verbose: bool = False,
        risk_level: float = 0.0,
    ) -> Dict:
        """Performs one iteration step of the Cross Entropy Method

        Args:
            ego_state_history: (num_agents, num_steps)  ego state history
            ego_state_target_trajectory: (num_agents, num_steps_future) ego target
              state trajectory
            ado_state_future_samples: (num_prediction_samples, num_agents, num_steps_future)
                predicted ado trajectory samples
            weights: (num_prediction_samples, num_agents) prediction sample weight
            verbose (optional): Print progress. Defaults to False.
            risk_level (optional): a risk-level float for the solver. If 0.0, risk-neutral
              expectation is used for selection of elites. Defaults to 0.0.

        Return:
            Dictionary containing information about this solver step.
        """

        self._iter_current += 1
        ego_control_input = torch.normal(
            self._control_input_mean.expand(
                self.params.num_control_samples, -1, -1, -1
            ),
            self._control_input_std.expand(self.params.num_control_samples, -1, -1, -1),
        )
        if verbose:
            print(f"**Cross Entropy Iteration {self._iter_current}")
            print(
                f"****Drawring ego's control input samples of {ego_control_input.shape}"
            )
        ego_state_current = ego_state_history[..., -1]
        ego_state_future = self.dynamics_model.simulate(
            ego_state_current, ego_control_input
        )
        if verbose:
            print(f"****Simulating ego's future state trajectory")

        # state starts with x, y, angle, vx, vy
        tracking_cost = self.tracking_cost(
            ego_state_future.position,
            ego_state_target_trajectory.position,
            ego_state_target_trajectory.velocity,
        )
        if verbose:
            print(
                f"****Computing tracking cost of {tracking_cost.shape} for the control input samples"
            )

        # state starts with x, y
        interaction_cost = get_interaction_cost(
            ego_state_future,
            ado_state_future_samples,
            self.interaction_cost,
        )
        if verbose:
            print(
                f"****Computing interaction cost of {interaction_cost.shape} for the control input samples"
            )
        interaction_risk = evaluate_risk(
            risk_level,
            interaction_cost,
            weights.permute(1, 0).unsqueeze(0).expand_as(interaction_cost),
            self.risk_estimator,
        )

        total_risk = interaction_risk + tracking_cost
        elite_ego_control_input, elite_total_risk = self._get_elites(
            ego_control_input, total_risk
        )
        if verbose:
            print(f"****Selecting {self.params.num_elite} elite samples")
            print(f"****Elite Total_Risk Information: {elite_total_risk}")

        info = dict(
            iteration=self._iter_current,
            control_input_mean=self._control_input_mean.detach().cpu().numpy().copy(),
            control_input_std=self._control_input_std.detach().cpu().numpy().copy(),
            ego_state_future=ego_state_future.get_states(5)
            .detach()
            .cpu()
            .numpy()
            .copy(),
            ado_state_future_samples=ado_state_future_samples.get_states(5)
            .detach()
            .cpu()
            .numpy()
            .copy(),
            sample_weights=weights.detach().cpu().numpy().copy(),
            tracking_cost=tracking_cost.detach().cpu().numpy().copy(),
            interaction_cost=interaction_cost.detach().cpu().numpy().copy(),
            total_risk=total_risk.detach().cpu().numpy().copy(),
        )

        self._update_control_distribution(elite_ego_control_input)
        if verbose:
            print("****Updating ego's control distribution")

        return info

    def solve(
        self,
        predictor: LitTrajectoryPredictor,
        ego_state_history: AbstractState,
        ego_state_target_trajectory: AbstractState,
        ado_state_history: AbstractState,
        normalizer: Callable[[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]],
        num_prediction_samples: int = 1,
        verbose: bool = False,
        risk_level: float = 0.0,
        resample_prediction: bool = False,
        risk_in_predictor: bool = False,
    ) -> List[Dict]:
        """Performs Cross Entropy optimization of ego's control input

        Args:
            predictor: LitTrajectoryPredictor object
            ego_state_history: (num_agents, num_steps, state_dim) ego state history
            ego_state_target_trajectory: (num_agents, num_steps_future, state_dim) ego target
              state trajectory
            ado_state_history: (num_agents, num_steps, state_dim) ado state history
            normalizer: function that takes in an unnormalized trajectory and that outputs the
              normalized trajectory and the offset in this order
            num_prediction_samples: number of prediction samples. Defaults to 1.
            verbose (optional): Print progress. Defaults to False.
            risk_level (optional): a risk-level float for the entire prediction-planning pipeline.
              If 0.0, risk-neutral prediction and planning are used. Defaults to 0.0.
            resample_prediction (optional): If True, prediction is re-sampled in each cross-entropy
              iteration. Defaults to False.
            risk_in_predictor (optional): If True, risk-biased prediction is used and the solver
              becomes risk-neutral. If False, risk-neutral prediction is used and the solver becomes
              risk-sensitive. Defaults to False.

        Return:
            List of dictionaries each containing information about the corresponding solver step.
        """
        if risk_level == 0.0:
            risk_level_planner, risk_level_predictor = 0.0, 0.0
        else:
            if risk_in_predictor:
                risk_level_planner, risk_level_predictor = 0.0, risk_level
            else:
                risk_level_planner, risk_level_predictor = risk_level, 0.0
        self.reset()
        infos = []
        ego_state_future = self.dynamics_model.simulate(
            ego_state_history[..., -1],
            self.control_sequence,
        )
        for iter in range(self.params.iter_max):
            assert iter == self._iter_current
            if resample_prediction or self._iter_current == 0:
                ado_state_future_samples, weights = self.sample_prediction(
                    predictor,
                    ado_state_history,
                    normalizer,
                    ego_state_history,
                    ego_state_future,
                    num_prediction_samples,
                    risk_level_predictor,
                )
                self._latest_ado_position_future_samples = ado_state_future_samples
            info = self.step(
                ego_state_history,
                ego_state_target_trajectory,
                ado_state_future_samples,
                weights,
                verbose=verbose,
                risk_level=risk_level_planner,
            )
            infos.append(info)
        if self.params.mean_warm_start:
            self.control_input_mean_init[:, :-1] = (
                self._control_input_mean[:, 1:].detach().clone()
            )
        return infos

    @property
    def control_sequence(self) -> torch.Tensor:
        """Returns the planned control sequence, which is a detached copy of the control input mean
        tensor

        Returns:
            (num_steps_future, control_dim) control sequence tensor
        """
        return self._control_input_mean.detach().clone()

    @staticmethod
    def sample_prediction(
        predictor: LitTrajectoryPredictor,
        ado_state_history: AbstractState,
        normalizer: Callable[[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]],
        ego_state_history: AbstractState,
        ego_state_future: AbstractState,
        num_prediction_samples: int = 1,
        risk_level: float = 0.0,
    ) -> Tuple[AbstractState, torch.Tensor]:
        """Sample prediction from the predictor given the history, normalizer, and the desired
        risk-level

        Args:
            predictor: LitTrajectoryPredictor object
            ado_state_history: (num_agents, num_steps, state_dim) tensor of ado position history
            normalizer: function that takes in an unnormalized trajectory and that outputs the
              normalized trajectory and the offset in this order
            ego_state_history: (num_agents, num_steps , state_dim) tensor of ego position history or future
            ego_state_future: (num_agents, num_steps_future, state_dim) tensor of ego position history or future
            num_prediction_samples (optional): number of prediction samples. Defaults to 1.
            risk_level (optional): a risk-level float for the predictor. If 0.0, risk-neutral
              prediction is sampled. Defaults to 0.0.

        Returns:
            state samples of shape (num_agents, num_prediction_samples, num_steps_future)
            probability weights of the samples of shape (num_agents, num_prediction_samples)
        """
        ado_position_history_normalized, offset = normalizer(
            ado_state_history.get_states(predictor.dynamic_state_dim)
            .unsqueeze(0)
            .expand(num_prediction_samples, -1, -1, -1)
        )

        x = ado_position_history_normalized.clone()
        mask_x = torch.ones_like(x[..., 0])
        map = torch.empty(num_prediction_samples, 0, 0, 2, device=x.device)
        mask_map = torch.empty(num_prediction_samples, 0, 0, device=x.device)

        batch = (
            x,
            mask_x,
            map,
            mask_map,
            offset,
            ego_state_history.get_states(predictor.dynamic_state_dim)
            .unsqueeze(0)
            .expand(num_prediction_samples, -1, -1, -1),
            ego_state_future.get_states(predictor.dynamic_state_dim)
            .unsqueeze(0)
            .expand(num_prediction_samples, -1, -1, -1),
        )

        ado_position_future_samples, weights = predictor.predict_step(
            batch,
            0,
            risk_level=risk_level,
            return_weights=True,
        )
        ado_position_future_samples = ado_position_future_samples.detach().cpu()
        weights = weights.detach().cpu()

        return to_state(ado_position_future_samples, predictor.dt), weights

    def fetch_latest_prediction(self):
        if self._latest_ado_position_future_samples is not None:
            return self._latest_ado_position_future_samples
        else:
            return None

    def _get_elites(
        self, control_input: torch.Tensor, risk: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Selects elite control input based on corresponding risk (lower the better)

        Args:
            control_input: (num_control_samples, num_agents, num_steps_future, control_dim) control samples
            risk: (num_control_samples, num_agents) risk tensor

        Returns:
            elite_control_input: (num_elite, num_agents, num_steps_future, control_dim) elite control
            elite_risk: (num_elite, num_agents) elite risk
        """
        num_control_samples = self.params.num_control_samples
        assert (
            control_input.shape[0] == num_control_samples
        ), f"size of control_input tensor must be {num_control_samples} at dimension 0"
        assert (
            risk.shape[0] == num_control_samples
        ), f"size of risk tensor must be {num_control_samples} at dimension 0"

        _, sorted_risk_indices = torch.sort(risk, dim=0)
        elite_control_input = control_input[
            sorted_risk_indices[: self.params.num_elite], np.arange(risk.shape[1])
        ]
        elite_risk = risk[
            sorted_risk_indices[: self.params.num_elite], np.arange(risk.shape[1])
        ]
        return elite_control_input, elite_risk

    def _update_control_distribution(self, elite_control_input: torch.Tensor) -> None:
        """Updates control input distribution using elites

        Args:
            elite_control_input: (num_elite, num_steps_future, control_dim) elite control
        """
        num_elite, smoothing_factor = (
            self.params.num_elite,
            self.params.smoothing_factor,
        )
        assert (
            elite_control_input.shape[0] == num_elite
        ), f"size of elite_control_input tensor must be {num_elite} at dimension 0"

        elite_control_input_mean = elite_control_input.mean(dim=0, keepdim=False)
        if num_elite < 2:
            elite_control_input_std = torch.zeros_like(elite_control_input_mean)
        else:
            elite_control_input_std = elite_control_input.std(dim=0, keepdim=False)
        self._control_input_mean = (
            1.0 - smoothing_factor
        ) * elite_control_input_mean + smoothing_factor * self._control_input_mean
        self._control_input_std = (
            1.0 - smoothing_factor
        ) * elite_control_input_std + smoothing_factor * self._control_input_std