File size: 4,630 Bytes
5769ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Lloyd algorithm while estimating average cost?

import os

import matplotlib.pyplot as plt
import matplotlib
import numpy as np
from pytorch_lightning.utilities.seed import seed_everything

# from scipy.cluster.vq import kmeans2
# from scipy.spatial import voronoi_plot_2d, Voronoi
import torch
from torch.utils.data import DataLoader

from risk_biased.scene_dataset.loaders import SceneDataLoaders
from risk_biased.scene_dataset.scene import RandomSceneParams

# from risk_biased.scene_dataset.scene_plotter import ScenePlotter
from risk_biased.utils.callbacks import DrawCallbackParams
from risk_biased.utils.config_argparse import config_argparse

from risk_biased.utils.load_model import load_from_config


def draw_travel_distance_map(
    model: torch.nn.Module,
    selected_agent: int,
    loader: DataLoader,
    sqrt_n_samples: int,
    params: DrawCallbackParams,
):
    n_samples = sqrt_n_samples**2
    (
        normalized_input,
        mask_input,
        fut,
        mask_fut,
        mask_loss,
        map,
        mask_map,
        offset,
        ego_past,
        ego_fut,
    ) = next(iter(loader))

    ego_traj = torch.cat((ego_past, ego_fut), dim=2)
    n_scenes, n_agents, n_steps, features = normalized_input.shape
    input_traj = SceneDataLoaders.unnormalize_trajectory(normalized_input, offset)

    # prior_samples = torch.rand(ped_trajs.shape[0], n_samples, 2)*6 - 3
    x = np.linspace(-3, 3, sqrt_n_samples)
    y = np.linspace(-3, 3, sqrt_n_samples)
    xx, yy = np.meshgrid(x, y)

    # Warning: if n_agents>1 the combinations of latent samples are not tested, this is not exploring all the possibilities.
    prior_samples = (
        torch.from_numpy(np.stack((xx, yy), -1).astype("float32"))
        .view(1, 1, n_samples, 2)
        .repeat(n_scenes, n_agents, 1, 1)
    )

    mask_z = torch.ones_like(prior_samples[..., 0, 0])
    y = model.decode(
        z_samples=prior_samples,
        mask_z=mask_z,
        x=normalized_input,
        mask_x=mask_input,
        map=map,
        mask_map=mask_map,
        offset=offset,
    )

    generated_trajs = (
        SceneDataLoaders.unnormalize_trajectory(
            y,
            offset,
        )
        .cpu()
        .detach()
        .numpy()
    )

    # fig, ax = plt.subplots()
    # plotter = ScenePlotter(scene, ax=ax)
    # time = params.scene_params.sample_times[params.num_steps - 1]
    # ind = 0
    # plotter.draw_scene(ind, time=time)
    # plotter.draw_trajectory(input_traj[ind])
    # plotter.draw_all_trajectories(generated_trajs, color="r")
    # plt.show()

    input_traj = np.repeat(
        input_traj.reshape((n_scenes, n_agents, 1, params.num_steps, features)),
        n_samples,
        axis=2,
    )

    generated_ped_trajs = np.concatenate((input_traj, generated_trajs), axis=3)

    travel_distances = np.sqrt(
        np.square(
            generated_ped_trajs[:, :, :, -1] - generated_ped_trajs[:, :, :, 0]
        ).sum(-1)
    )

    travel_distances = (
        travel_distances[:, selected_agent]
        .reshape(n_scenes, sqrt_n_samples, sqrt_n_samples)
        .mean(0)
    )
    cmap = plt.get_cmap("RdBu_r")
    vmin = params.scene_params.time_scene * params.scene_params.slow_speed
    vmax = params.scene_params.time_scene * params.scene_params.fast_speed
    plt.contourf(
        xx,
        yy,
        travel_distances,
        50,
        cmap=cmap,
        extent=(-3, 3, -3, 3),
        vmin=vmin,
        vmax=vmax,
    )
    norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax, clip=True)
    sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
    plt.colorbar(sm, label="Travel distance")
    plt.axis([-3, 3, -3, 3])
    plt.show()


if __name__ == "__main__":
    # Draws a map, in the latent space, of travel distances averaged on a batch of input trajectories.
    working_dir = os.path.dirname(os.path.realpath(__file__))
    config_path = os.path.join(
        working_dir, "..", "..", "risk_biased", "config", "learning_config.py"
    )
    cfg = config_argparse(config_path)

    cfg.batch_size = 128
    model, loaders, cfg = load_from_config(cfg)
    assert (
        cfg.latent_dim == 2
        and "The latent dimension of the model must be exactly 2 to be plotted (no dimensionality reduction capabilities)"
    )
    scene_params = RandomSceneParams.from_config(cfg)
    draw_params = DrawCallbackParams.from_config(cfg)
    if cfg.seed is not None:
        seed_everything(cfg.seed)

    sqrt_n_samples = 20
    draw_travel_distance_map(
        model.model,
        0,
        loaders.val_dataloader(),
        sqrt_n_samples,
        draw_params,
    )