Spaces:
Running
Running
File size: 4,630 Bytes
5769ee4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
# Lloyd algorithm while estimating average cost?
import os
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
from pytorch_lightning.utilities.seed import seed_everything
# from scipy.cluster.vq import kmeans2
# from scipy.spatial import voronoi_plot_2d, Voronoi
import torch
from torch.utils.data import DataLoader
from risk_biased.scene_dataset.loaders import SceneDataLoaders
from risk_biased.scene_dataset.scene import RandomSceneParams
# from risk_biased.scene_dataset.scene_plotter import ScenePlotter
from risk_biased.utils.callbacks import DrawCallbackParams
from risk_biased.utils.config_argparse import config_argparse
from risk_biased.utils.load_model import load_from_config
def draw_travel_distance_map(
model: torch.nn.Module,
selected_agent: int,
loader: DataLoader,
sqrt_n_samples: int,
params: DrawCallbackParams,
):
n_samples = sqrt_n_samples**2
(
normalized_input,
mask_input,
fut,
mask_fut,
mask_loss,
map,
mask_map,
offset,
ego_past,
ego_fut,
) = next(iter(loader))
ego_traj = torch.cat((ego_past, ego_fut), dim=2)
n_scenes, n_agents, n_steps, features = normalized_input.shape
input_traj = SceneDataLoaders.unnormalize_trajectory(normalized_input, offset)
# prior_samples = torch.rand(ped_trajs.shape[0], n_samples, 2)*6 - 3
x = np.linspace(-3, 3, sqrt_n_samples)
y = np.linspace(-3, 3, sqrt_n_samples)
xx, yy = np.meshgrid(x, y)
# Warning: if n_agents>1 the combinations of latent samples are not tested, this is not exploring all the possibilities.
prior_samples = (
torch.from_numpy(np.stack((xx, yy), -1).astype("float32"))
.view(1, 1, n_samples, 2)
.repeat(n_scenes, n_agents, 1, 1)
)
mask_z = torch.ones_like(prior_samples[..., 0, 0])
y = model.decode(
z_samples=prior_samples,
mask_z=mask_z,
x=normalized_input,
mask_x=mask_input,
map=map,
mask_map=mask_map,
offset=offset,
)
generated_trajs = (
SceneDataLoaders.unnormalize_trajectory(
y,
offset,
)
.cpu()
.detach()
.numpy()
)
# fig, ax = plt.subplots()
# plotter = ScenePlotter(scene, ax=ax)
# time = params.scene_params.sample_times[params.num_steps - 1]
# ind = 0
# plotter.draw_scene(ind, time=time)
# plotter.draw_trajectory(input_traj[ind])
# plotter.draw_all_trajectories(generated_trajs, color="r")
# plt.show()
input_traj = np.repeat(
input_traj.reshape((n_scenes, n_agents, 1, params.num_steps, features)),
n_samples,
axis=2,
)
generated_ped_trajs = np.concatenate((input_traj, generated_trajs), axis=3)
travel_distances = np.sqrt(
np.square(
generated_ped_trajs[:, :, :, -1] - generated_ped_trajs[:, :, :, 0]
).sum(-1)
)
travel_distances = (
travel_distances[:, selected_agent]
.reshape(n_scenes, sqrt_n_samples, sqrt_n_samples)
.mean(0)
)
cmap = plt.get_cmap("RdBu_r")
vmin = params.scene_params.time_scene * params.scene_params.slow_speed
vmax = params.scene_params.time_scene * params.scene_params.fast_speed
plt.contourf(
xx,
yy,
travel_distances,
50,
cmap=cmap,
extent=(-3, 3, -3, 3),
vmin=vmin,
vmax=vmax,
)
norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax, clip=True)
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
plt.colorbar(sm, label="Travel distance")
plt.axis([-3, 3, -3, 3])
plt.show()
if __name__ == "__main__":
# Draws a map, in the latent space, of travel distances averaged on a batch of input trajectories.
working_dir = os.path.dirname(os.path.realpath(__file__))
config_path = os.path.join(
working_dir, "..", "..", "risk_biased", "config", "learning_config.py"
)
cfg = config_argparse(config_path)
cfg.batch_size = 128
model, loaders, cfg = load_from_config(cfg)
assert (
cfg.latent_dim == 2
and "The latent dimension of the model must be exactly 2 to be plotted (no dimensionality reduction capabilities)"
)
scene_params = RandomSceneParams.from_config(cfg)
draw_params = DrawCallbackParams.from_config(cfg)
if cfg.seed is not None:
seed_everything(cfg.seed)
sqrt_n_samples = 20
draw_travel_distance_map(
model.model,
0,
loaders.val_dataloader(),
sqrt_n_samples,
draw_params,
)
|