File size: 5,037 Bytes
5769ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Lloyd algorithm while estimating average cost?

import os

import matplotlib.pyplot as plt
import matplotlib
import numpy as np
from pytorch_lightning.utilities.seed import seed_everything

# from scipy.cluster.vq import kmeans2
# from scipy.spatial import voronoi_plot_2d, Voronoi
import torch
import torch.nn as nn

from risk_biased.scene_dataset.loaders import SceneDataLoaders
from risk_biased.scene_dataset.scene import RandomScene, RandomSceneParams

# from risk_biased.scene_dataset.scene_plotter import ScenePlotter
from risk_biased.utils.callbacks import get_fast_slow_scenes, DrawCallbackParams
from risk_biased.utils.config_argparse import config_argparse
from risk_biased.utils.cost import TTCCostNumpy

from risk_biased.utils.load_model import load_from_config


def draw_cost_map(
    model: nn.Module,
    selected_agent: int,
    device,
    scene: RandomScene,
    sqrt_n_samples: int,
    params: DrawCallbackParams,
):
    n_samples = sqrt_n_samples**2
    ped_trajs = scene.get_pedestrians_trajectories()
    n_scenes, n_agents, n_steps, features = ped_trajs.shape
    input_traj = ped_trajs[:, :, : params.num_steps]
    normalized_input, offset = SceneDataLoaders.normalize_trajectory(
        torch.from_numpy(input_traj.astype("float32")).contiguous().to(device)
    )

    n_scenes = ped_trajs.shape[0]

    x = np.linspace(-3, 3, sqrt_n_samples)
    y = np.linspace(-3, 3, sqrt_n_samples)
    xx, yy = np.meshgrid(x, y)
    prior_samples = (
        torch.from_numpy(np.stack((xx, yy), -1).astype("float32"))
        .view(1, 1, n_samples, 2)
        .repeat(n_scenes, n_agents, 1, 1)
    )

    mask_z = torch.ones_like(prior_samples[..., 0, 0])
    mask_input = torch.ones_like(normalized_input[..., 0])
    map = torch.empty(n_scenes, 0, 0, features, device=device)
    mask_map = torch.empty(n_scenes, 0, 0)
    generated_trajs = (
        SceneDataLoaders.unnormalize_trajectory(
            model.decode(
                z_samples=prior_samples,
                mask_z=mask_z,
                x=normalized_input,
                mask_x=mask_input,
                map=map,
                mask_map=mask_map,
                offset=offset,
            ),
            offset,
        )
        .cpu()
        .detach()
        .numpy()
    )

    input_traj = np.repeat(
        input_traj.reshape((n_scenes, n_agents, 1, params.num_steps, features)),
        n_samples,
        axis=2,
    )

    generated_ped_trajs = np.concatenate((input_traj, generated_trajs), axis=3)
    ego_traj = scene.get_ego_ref_trajectory(params.scene_params.sample_times)[
        None, :, :
    ]
    ttc_cost_func = TTCCostNumpy(params.ttc_cost_params)

    sample_times = np.array(params.scene_params.sample_times)
    ped_velocities = (
        generated_ped_trajs[:, :, :, 1:] - generated_ped_trajs[:, :, :, :-1]
    ) / ((sample_times[1:] - sample_times[:-1])[None, None, None, :, None])
    ped_velocities = np.concatenate((ped_velocities[:, :, :, 0:1], ped_velocities), 3)
    ttc_cost_pred, (ttc_pred, dist_pred) = ttc_cost_func(
        ego_traj[:, :, :, params.num_steps :],
        generated_ped_trajs[:, :, :, params.num_steps :],
        scene.get_ego_ref_velocity()[:, :, None],
        ped_velocities[:, :, :, params.num_steps :],
    )

    ttc_cost_pred = (
        ttc_cost_pred[:, selected_agent]
        .reshape(n_scenes, sqrt_n_samples, sqrt_n_samples)
        .mean(0)
    )
    cmap = plt.get_cmap("RdBu_r")
    plt.contourf(
        xx,
        yy,
        ttc_cost_pred.reshape((sqrt_n_samples, sqrt_n_samples)),
        50,
        cmap=cmap,
        extent=(-3, 3, -3, 3),
        vmin=0,
        vmax=2,
    )
    norm = matplotlib.colors.Normalize(vmin=0, vmax=2, clip=True)
    sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
    plt.colorbar(sm, label="TTC cost")
    plt.axis([-3, 3, -3, 3])
    plt.show()


if __name__ == "__main__":
    # Draws a contour plot of the cost associated with the latent samples in two scenarios: safer_fast and safer_slow
    working_dir = os.path.dirname(os.path.realpath(__file__))
    config_path = os.path.join(
        working_dir, "..", "..", "risk_biased", "config", "learning_config.py"
    )
    cfg = config_argparse(config_path)

    model, loaders, cfg = load_from_config(cfg)
    assert (
        cfg.latent_dim == 2
        and "The latent dimension of the model must be exactly 2 to be plotted (no dimensionality reduction capabilities)"
    )
    scene_params = RandomSceneParams.from_config(cfg)
    safer_fast_scene, safer_slow_scene = get_fast_slow_scenes(scene_params, 100)
    draw_params = DrawCallbackParams.from_config(cfg)
    if cfg.seed is not None:
        seed_everything(cfg.seed)

    sqrt_n_samples = 100
    n_quantize = 100
    draw_cost_map(
        model.model,
        0,
        model.device,
        safer_fast_scene,
        sqrt_n_samples,
        draw_params,
    )
    draw_cost_map(
        model.model,
        0,
        model.device,
        safer_slow_scene,
        sqrt_n_samples,
        draw_params,
    )