File size: 6,994 Bytes
5769ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import math
import os

import matplotlib.pyplot as plt
import numpy as np
from pytorch_lightning.utilities.seed import seed_everything
import torch

from risk_biased.scene_dataset.scene import RandomScene, RandomSceneParams
from risk_biased.utils.cost import (
    DistanceCostNumpy,
    DistanceCostParams,
    TTCCostNumpy,
    TTCCostParams,
)
from risk_biased.utils.load_model import load_from_config
from risk_biased.utils.risk import get_risk_level_sampler
from risk_biased.utils.config_argparse import config_argparse

if __name__ == "__main__":
    working_dir = os.path.dirname(os.path.realpath(__file__))
    config_path = os.path.join(
        working_dir, "..", "..", "risk_biased", "config", "learning_config.py"
    )
    config = config_argparse(config_path)
    model, loaders, config = load_from_config(config)
    if config.seed is not None:
        seed_everything(config.seed)

    risk_sampler = get_risk_level_sampler(config.risk_distribution)

    is_torch = False
    n_scenes = 1000
    sample_every = 10

    # Get a batch of random pedestrians
    scene_params = RandomSceneParams.from_config(config)
    scene_params.batch_size = n_scenes
    scene = RandomScene(
        scene_params,
        is_torch=is_torch,
    )

    dist_cost_func = DistanceCostNumpy(DistanceCostParams.from_config(config))
    ttc_cost_func = TTCCostNumpy(TTCCostParams.from_config(config))

    len_traj = int(config.time_scene / scene.dt)
    ped_trajs = scene.get_pedestrians_trajectories()
    ped_trajs_past = ped_trajs[:, :, : config.num_steps]

    batch_size = ped_trajs.shape[0]
    ego_traj = scene.get_ego_ref_trajectory(config.sample_times).repeat(
        batch_size, axis=0
    )

    normalized_trajs, offset = loaders.normalize_trajectory(
        torch.from_numpy(ped_trajs.astype("float32")).contiguous()
    )
    x = normalized_trajs[:, :, : config.num_steps]
    ego_history = (
        torch.from_numpy(ego_traj[:, :, : config.num_steps].astype("float32"))
        .expand_as(x)
        .contiguous()
    )
    ego_future = (
        torch.from_numpy(ego_traj[:, :, -config.num_steps_future :].astype("float32"))
        .expand(x.shape[0], x.shape[1], -1, -1)
        .contiguous()
    )
    mask_x = torch.ones_like(x[..., 0])
    map = torch.empty(ego_history.shape[0], 0, 0, 2, device=mask_x.device)
    mask_map = torch.empty(ego_history.shape[0], 0, 0, device=mask_x.device)

    pred_riskier = (
        model.predict_step(
            (x, mask_x, map, mask_map, offset, ego_history, ego_future),
            0,
            risk_level=risk_sampler.get_highest_risk(
                batch_size=n_scenes, device="cpu"
            ).unsqueeze(1),
        )
        .cpu()
        .detach()
        .numpy()
    )

    pred = (
        model.predict_step(
            (x, mask_x, map, mask_map, offset, ego_history, ego_future),
            0,
            risk_level=None,
        )
        .cpu()
        .detach()
        .numpy()
    )

    ped_trajs_pred = np.concatenate((ped_trajs_past, pred), axis=-2)
    ped_trajs_pred_riskier = np.concatenate((ped_trajs_past, pred_riskier), axis=-2)

    travel_distances = np.sqrt(
        np.square(ped_trajs[..., -1, :] - ped_trajs[..., 0, :]).sum(-1)
    )

    dist_cost, dist = dist_cost_func(
        ego_traj[:, :, config.num_steps :], ped_trajs[:, :, config.num_steps :]
    )

    ttc_cost, (ttc, dist) = ttc_cost_func(
        ego_traj[:, :, config.num_steps :],
        ped_trajs[:, :, config.num_steps :],
        scene.get_ego_ref_velocity(),
        scene.get_pedestrians_velocities(),
    )

    travel_distances_pred = np.sqrt(
        np.square(ped_trajs_pred[..., -1, :] - ped_trajs_pred[..., 0, :]).sum(-1)
    )
    dist_cost_pred, dist_pred = dist_cost_func(
        ego_traj[:, :, config.num_steps :], ped_trajs_pred[:, :, config.num_steps :]
    )
    sample_times = np.array(config.sample_times)
    ped_velocities_pred = (ped_trajs_pred[:, :, 1:] - ped_trajs_pred[:, :, :-1]) / (
        (sample_times[1:] - sample_times[:-1])[None, None, :, None]
    )
    ped_velocities_pred = np.concatenate(
        (ped_velocities_pred[:, :, 0:1], ped_velocities_pred), -2
    )
    ttc_cost_pred, (ttc_pred, dist_pred) = ttc_cost_func(
        ego_traj[:, :, config.num_steps :],
        ped_trajs_pred[:, :, config.num_steps :],
        scene.get_ego_ref_velocity(),
        ped_velocities_pred[:, :, config.num_steps :],
    )

    travel_distances_pred_riskier = np.sqrt(
        np.square(
            ped_trajs_pred_riskier[..., -1, :] - ped_trajs_pred_riskier[..., 0, :]
        ).sum(-1)
    )

    dist_cost_pred_riskier, dist_pred_riskier = dist_cost_func(
        ego_traj[:, :, config.num_steps :],
        ped_trajs_pred_riskier[:, :, config.num_steps :],
    )
    sample_times = np.array(config.sample_times)
    ped_velocities_pred_riskier = (
        ped_trajs_pred_riskier[:, :, 1:] - ped_trajs_pred_riskier[:, :, :-1]
    ) / ((sample_times[1:] - sample_times[:-1])[None, None, :, None])
    ped_velocities_pred_riskier = np.concatenate(
        (ped_velocities_pred_riskier[:, :, 0:1], ped_velocities_pred_riskier), 2
    )
    ttc_cost_pred_riskier, (ttc_pred, dist_pred_riskier) = ttc_cost_func(
        ego_traj[:, :, config.num_steps :],
        ped_trajs_pred_riskier[:, :, config.num_steps :],
        scene.get_ego_ref_velocity(),
        ped_velocities_pred_riskier[:, :, config.num_steps :],
    )

    def plot_histograms(travel_distances, dist_cost, ttc_cost, label=""):
        # Open the plots for the sampled future times
        fig, ax = plt.subplots(1, 3)
        fig.suptitle(label)

        # Plot histograms of traveled distances, depending on the parameters.
        # It should be multi-modal. There is a minimum distance and a maximum distance and travel distance variations within these bounds.
        ax[0].set_title("Travel distance")
        ax[1].set_title("Distance cost")
        ax[2].set_title("TTC cost")

        ax[0].hist(travel_distances, bins=30)
        ax[1].hist(dist_cost.flatten(), bins=30)
        ax[1].set_ylim([0, 3 * math.sqrt(n_scenes)])
        ax[2].hist(ttc_cost.flatten(), bins=30)
        ax[2].set_ylim([0, 3 * math.sqrt(n_scenes)])

    agent_selected = 0

    plot_histograms(
        travel_distances[:, agent_selected],
        dist_cost[:, agent_selected],
        ttc_cost[:, agent_selected],
        "Data",
    )
    plot_histograms(
        travel_distances_pred[:, agent_selected],
        dist_cost_pred[:, agent_selected],
        ttc_cost_pred[:, agent_selected],
        "Prediction normal risk",
    )
    plot_histograms(
        travel_distances_pred_riskier[:, agent_selected],
        dist_cost_pred_riskier[:, agent_selected],
        ttc_cost_pred_riskier[:, agent_selected],
        "Prediction high risk",
    )

    print(f"Average ttc risk")
    print(
        f"Ground truth: {ttc_cost.mean()}, Prediction: {ttc_cost_pred.mean()}, Biased prediction: {ttc_cost_pred_riskier.mean()}"
    )

    plt.show()