Spaces:
Running
Running
File size: 3,653 Bytes
5769ee4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
# Implementation from https://einops.rocks/pytorch-examples.html slightly changed
import math
from typing import Tuple
import torch
from torch import nn
from einops import rearrange, repeat
class MultiHeadAttention(nn.Module):
"""
This is a slightly modified version of the original implementation from https://einops.rocks/pytorch-examples.html of multihead attention.
It keeps the original dimension division per head and masks the attention matrix before and after the softmax to support full row masking.
Args:
d_model: the input feature dimension of the model
n_head: the number of heads in the multihead attention
d_k: the dimension of the key and query in the multihead attention
d_v: the dimension of the value in the multihead attention
"""
def __init__(self, d_model: int, n_head: int, d_k: torch.Tensor, d_v: torch.Tensor):
super().__init__()
self.n_head = n_head
self.w_qs = nn.Linear(d_model, int(d_k / n_head) * n_head)
self.w_ks = nn.Linear(d_model, int(d_k / n_head) * n_head)
self.w_vs = nn.Linear(d_model, int(d_v / n_head) * n_head)
self.w_rs = nn.Linear(d_model, int(d_v / n_head) * n_head)
nn.init.normal_(self.w_qs.weight, mean=0, std=math.sqrt(2.0 / (d_model + d_k)))
nn.init.normal_(self.w_ks.weight, mean=0, std=math.sqrt(2.0 / (d_model + d_k)))
nn.init.normal_(self.w_vs.weight, mean=0, std=math.sqrt(2.0 / (d_model + d_v)))
nn.init.normal_(self.w_rs.weight, mean=0, std=math.sqrt(2.0 / (d_model + d_v)))
self.fc = nn.Linear(int(d_v / n_head) * n_head, d_model)
nn.init.xavier_normal_(self.fc.weight)
self.layer_norm = nn.LayerNorm(d_model)
def forward(
self,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
mask: torch.Tensor = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Compute the masked multi-head attention given the query, key and value tensors.
Args:
q: the query tensor of shape [batch_size, number_of_agents, d_model]
k: the key tensor of shape [batch_size, number_of_objects, d_model]
v: the value tensor of shape [batch_size, number_of_objects, d_model]
mask: the mask tensor of shape [batch_size, number_of_agents, number_of_objects]
Returns:
[
The attention output tensor of shape [batch_size, number_of_agents, d_model],
The attention matrix of shape [batch_size, number_of_agents, number_of_objects]
]
"""
residual = q.clone()
r = self.w_rs(q)
q = rearrange(self.w_qs(q), "b a (head k) -> head b a k", head=self.n_head)
k = rearrange(self.w_ks(k), "b o (head k) -> head b o k", head=self.n_head)
v = rearrange(self.w_vs(v), "b o (head v) -> head b o v", head=self.n_head)
attn = torch.einsum("hbak,hbok->hbao", [q, k]) / math.sqrt(q.shape[-1])
if mask is not None:
# b: batch, a: agent, o: object, h: head
mask = repeat(mask, "b a o -> h b a o", h=self.n_head)
attn = attn.masked_fill(mask == 0, -math.inf)
attn = torch.softmax(attn, dim=3)
# Here we need to mask again because some lines might be all -inf in the softmax which gives Nan...
attn = attn.masked_fill(mask == 0, 0)
output = torch.einsum("hbao,hbov->hbav", [attn, v])
output = rearrange(output, "head b a v -> b a (head v)")
output = self.fc(output * r)
output = self.layer_norm(output + residual)
return output, attn
|