Spaces:
Running
Running
File size: 14,115 Bytes
5769ee4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
from typing import Optional
from einops import rearrange
import torch
import torch.nn as nn
from risk_biased.models.cvae_params import CVAEParams
from risk_biased.models.nn_blocks import (
MCG,
MAB,
MHB,
SequenceEncoderLSTM,
SequenceEncoderMLP,
SequenceEncoderMaskedLSTM,
)
from risk_biased.models.latent_distributions import AbstractLatentDistribution
class BaseEncoderNN(nn.Module):
"""Base encoder neural network that defines the common functionality of encoders.
It should not be used directly but rather extended to define specific encoders.
Args:
params: dataclass defining the necessary parameters
num_steps: length of the input sequence
"""
def __init__(
self,
params: CVAEParams,
latent_dim: int,
num_steps: int,
) -> None:
super().__init__()
self.is_mlp_residual = params.is_mlp_residual
self.num_hidden_layers = params.num_hidden_layers
self.num_steps = params.num_steps
self.num_steps_future = params.num_steps_future
self.sequence_encoder_type = params.sequence_encoder_type
self.state_dim = params.state_dim
self.latent_dim = latent_dim
self.hidden_dim = params.hidden_dim
if params.sequence_encoder_type == "MLP":
self._agent_encoder = SequenceEncoderMLP(
params.state_dim,
params.hidden_dim,
params.num_hidden_layers,
num_steps,
params.is_mlp_residual,
)
elif params.sequence_encoder_type == "LSTM":
self._agent_encoder = SequenceEncoderLSTM(
params.state_dim, params.hidden_dim
)
elif params.sequence_encoder_type == "maskedLSTM":
self._agent_encoder = SequenceEncoderMaskedLSTM(
params.state_dim, params.hidden_dim
)
if params.interaction_type == "Attention" or params.interaction_type == "MAB":
self._interaction = MAB(
params.hidden_dim, params.num_attention_heads, params.num_blocks
)
elif (
params.interaction_type == "ContextGating"
or params.interaction_type == "MCG"
):
self._interaction = MCG(
params.hidden_dim,
params.mcg_dim_expansion,
params.mcg_num_layers,
params.num_blocks,
params.is_mlp_residual,
)
elif params.interaction_type == "Hybrid" or params.interaction_type == "MHB":
self._interaction = MHB(
params.hidden_dim,
params.num_attention_heads,
params.mcg_dim_expansion,
params.mcg_num_layers,
params.num_blocks,
params.is_mlp_residual,
)
else:
self._interaction = lambda x, *args, **kwargs: x
self._output_layer = nn.Linear(params.hidden_dim, self.latent_dim)
def encode_agents(self, x: torch.Tensor, mask_x: torch.Tensor, *args, **kwargs):
raise NotImplementedError
def forward(
self,
x: torch.Tensor,
mask_x: torch.Tensor,
encoded_absolute: torch.Tensor,
encoded_map: torch.Tensor,
mask_map: torch.Tensor,
y: Optional[torch.Tensor] = None,
mask_y: Optional[torch.Tensor] = None,
x_ego: Optional[torch.Tensor] = None,
y_ego: Optional[torch.Tensor] = None,
offset: Optional[torch.Tensor] = None,
risk_level: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward function that encodes input tensors into an output tensor of dimension
latent_dim.
Args:
x: (batch_size, num_agents, num_steps, state_dim) tensor of history
mask_x: (batch_size, num_agents, num_steps) tensor of bool mask
encoded_absolute: (batch_size, num_agents, feature_size) tensor of the encoded absolute agent positions
encoded_map: (batch_size, num_objects, map_feature_dim) tensor of encoded map objects
mask_map: (batch_size, num_objects) tensor of bool mask
y (optional): (batch_size, num_agents, num_steps_future, state_dim) tensor of future trajectory.
mask_y (optional): (batch_size, num_agents, num_steps_future) tensor of bool mask. Defaults to None.
x_ego: (batch_size, 1, num_steps, state_dim) ego history
y_ego: (batch_size, 1, num_steps_future, state_dim) ego future
offset (optional): (batch_size, num_agents, state_dim) offset position from ego.
risk_level (optional): (batch_size, num_agents) tensor of risk levels desired for future
trajectories. Defaults to None.
Returns:
(batch_size, num_agents, latent_dim) output tensor
"""
h_agents = self.encode_agents(
x=x,
mask_x=mask_x,
y=y,
mask_y=mask_y,
x_ego=x_ego,
y_ego=y_ego,
offset=offset,
risk_level=risk_level,
)
mask_agent = mask_x.any(-1)
h_agents = self._interaction(
h_agents, mask_agent, encoded_absolute, encoded_map, mask_map
)
return self._output_layer(h_agents)
class BiasedEncoderNN(BaseEncoderNN):
"""Biased encoder neural network that encodes past info and auxiliary input
into a biased distribution over the latent space.
Args:
params: dataclass defining the necessary parameters
num_steps: length of the input sequence
"""
def __init__(
self,
params: CVAEParams,
latent_dim: int,
num_steps: int,
) -> None:
super().__init__(params, latent_dim, num_steps)
self.condition_on_ego_future = params.condition_on_ego_future
if params.sequence_encoder_type == "MLP":
self._ego_encoder = SequenceEncoderMLP(
params.state_dim,
params.hidden_dim,
params.num_hidden_layers,
params.num_steps
+ params.num_steps_future * self.condition_on_ego_future,
params.is_mlp_residual,
)
elif params.sequence_encoder_type == "LSTM":
self._ego_encoder = SequenceEncoderLSTM(params.state_dim, params.hidden_dim)
elif params.sequence_encoder_type == "maskedLSTM":
self._ego_encoder = SequenceEncoderMaskedLSTM(
params.state_dim, params.hidden_dim
)
self._auxiliary_encode = nn.Linear(
params.hidden_dim + 1 + params.hidden_dim, params.hidden_dim
)
def biased_parameters(self, recurse: bool = True):
"""Get the parameters to be optimized when training to bias."""
yield from self.parameters(recurse)
def encode_agents(
self,
x: torch.Tensor,
mask_x: torch.Tensor,
*,
x_ego: torch.Tensor,
y_ego: torch.Tensor,
offset: torch.Tensor,
risk_level: torch.Tensor,
**kwargs,
):
"""Encode agent input and auxiliary input into a feature vector.
Args:
x: (batch_size, num_agents, num_steps, state_dim) tensor of history
mask_x: (batch_size, num_agents, num_steps) tensor of bool mask
x_ego: (batch_size, 1, num_steps, state_dim) ego history
y_ego: (batch_size, 1, num_steps_future, state_dim) ego future
offset: (batch_size, num_agents, state_dim) offset position from ego.
risk_level: (batch_size, num_agents) tensor of risk levels desired for future
trajectories. Defaults to None.
Returns:
(batch_size, latent_dim) output tensor
"""
if self.condition_on_ego_future:
ego_tensor = torch.cat([x_ego, y_ego], dim=-2)
else:
ego_tensor = x_ego
risk_feature = ((risk_level - 0.5) * 10).exp().unsqueeze(-1)
mask_ego = torch.ones(
ego_tensor.shape[0],
offset.shape[1],
ego_tensor.shape[2],
device=ego_tensor.device,
)
batch_size, n_agents, dynamic_state_dim = offset.shape
state_dim = ego_tensor.shape[-1]
extended_offset = torch.cat(
(
offset,
torch.zeros(
batch_size,
n_agents,
state_dim - dynamic_state_dim,
device=offset.device,
),
),
dim=-1,
).unsqueeze(-2)
if extended_offset.shape[1] > 1:
ego_encoded = self._ego_encoder(
ego_tensor + extended_offset[:, :1] - extended_offset, mask_ego
)
else:
ego_encoded = self._ego_encoder(ego_tensor - extended_offset, mask_ego)
auxiliary_input = torch.cat((risk_feature, ego_encoded), -1)
h_agents = self._agent_encoder(x, mask_x)
h_agents = torch.cat([h_agents, auxiliary_input], dim=-1)
h_agents = self._auxiliary_encode(h_agents)
return h_agents
class InferenceEncoderNN(BaseEncoderNN):
"""Inference encoder neural network that encodes past info into the
inference distribution over the latent space.
Args:
params: dataclass defining the necessary parameters
num_steps: length of the input sequence
"""
def biaser_parameters(self, recurse: bool = True):
yield from []
def encode_agents(self, x: torch.Tensor, mask_x: torch.Tensor, *args, **kwargs):
h_agents = self._agent_encoder(x, mask_x)
return h_agents
class FutureEncoderNN(BaseEncoderNN):
"""Future encoder neural network that encodes past and future info into the
future-conditioned distribution over the latent space.
The future is not available at test time, this is only used for training.
Args:
params: dataclass defining the necessary parameters
num_steps: length of the input sequence
"""
def biaser_parameters(self, recurse: bool = True):
"""The future encoder is not optimized when training to bias."""
yield from []
def encode_agents(
self,
x: torch.Tensor,
mask_x: torch.Tensor,
*,
y: torch.Tensor,
mask_y: torch.Tensor,
**kwargs,
):
"""Encode agent input and future input into a feature vector.
Args:
x: (batch_size, num_agents, num_steps, state_dim) tensor of trajectory history
mask_x: (batch_size, num_agents, num_steps) tensor of bool mask
y: (batch_size, num_agents, num_steps_future, state_dim) future trajectory
mask_y: (batch_size, num_agents, num_steps_future) tensor of bool mask
"""
mask_traj = torch.cat([mask_x, mask_y], dim=-1)
h_agents = self._agent_encoder(torch.cat([x, y], dim=-2), mask_traj)
return h_agents
class CVAEEncoder(nn.Module):
"""Encoder architecture for conditional variational autoencoder
Args:
model: encoder neural network that transforms input tensors to an unsplitted latent output
latent_distribution_creator: Class that creates a latent distribution class for the latent space.
"""
def __init__(
self,
model: BaseEncoderNN,
latent_distribution_creator,
) -> None:
super().__init__()
self._model = model
self.latent_dim = model.latent_dim
self._latent_distribution_creator = latent_distribution_creator
def biased_parameters(self, recurse: bool = True):
yield from self._model.biased_parameters(recurse)
def forward(
self,
x: torch.Tensor,
mask_x: torch.Tensor,
encoded_absolute: torch.Tensor,
encoded_map: torch.Tensor,
mask_map: torch.Tensor,
y: Optional[torch.Tensor] = None,
mask_y: Optional[torch.Tensor] = None,
x_ego: Optional[torch.Tensor] = None,
y_ego: Optional[torch.Tensor] = None,
offset: Optional[torch.Tensor] = None,
risk_level: Optional[torch.Tensor] = None,
) -> AbstractLatentDistribution:
"""Forward function that encodes input tensors into an output tensor of dimension
latent_dim.
Args:
x: (batch_size, num_agents, num_steps, state_dim) tensor of history
mask_x: (batch_size, num_agents, num_steps) tensor of bool mask
encoded_absolute: (batch_size, num_agents, feature_size) tensor of the encoded absolute agent positions
encoded_map: (batch_size, num_objects, map_feature_dim) tensor of encoded map objects
mask_map: (batch_size, num_objects) tensor of bool mask
y (optional): (batch_size, num_agents, num_steps_future, state_dim) tensor of future trajectory.
mask_y (optional): (batch_size, num_agents, num_steps_future) tensor of bool mask. Defaults to None.
x_ego (optional): (batch_size, 1, num_steps, state_dim) ego history
y_ego (optional): (batch_size, 1, num_steps_future, state_dim) ego future
offset (optional): (batch_size, num_agents, state_dim) offset position from ego.
risk_level (optional): (batch_size, num_agents) tensor of risk levels desired for future
trajectories. Defaults to None.
Returns:
Latent distribution representing the posterior over the latent variables given the input observations.
"""
latent_output = self._model(
x=x,
mask_x=mask_x,
encoded_absolute=encoded_absolute,
encoded_map=encoded_map,
mask_map=mask_map,
y=y,
mask_y=mask_y,
x_ego=x_ego,
y_ego=y_ego,
offset=offset,
risk_level=risk_level,
)
latent_distribution = self._latent_distribution_creator(latent_output)
return latent_distribution
|