File size: 14,115 Bytes
5769ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
from typing import Optional

from einops import rearrange
import torch
import torch.nn as nn

from risk_biased.models.cvae_params import CVAEParams
from risk_biased.models.nn_blocks import (
    MCG,
    MAB,
    MHB,
    SequenceEncoderLSTM,
    SequenceEncoderMLP,
    SequenceEncoderMaskedLSTM,
)
from risk_biased.models.latent_distributions import AbstractLatentDistribution


class BaseEncoderNN(nn.Module):
    """Base encoder neural network that defines the common functionality of encoders.
    It should not be used directly but rather extended to define specific encoders.

    Args:
       params: dataclass defining the necessary parameters
       num_steps: length of the input sequence
    """

    def __init__(
        self,
        params: CVAEParams,
        latent_dim: int,
        num_steps: int,
    ) -> None:
        super().__init__()
        self.is_mlp_residual = params.is_mlp_residual
        self.num_hidden_layers = params.num_hidden_layers
        self.num_steps = params.num_steps
        self.num_steps_future = params.num_steps_future
        self.sequence_encoder_type = params.sequence_encoder_type
        self.state_dim = params.state_dim
        self.latent_dim = latent_dim
        self.hidden_dim = params.hidden_dim

        if params.sequence_encoder_type == "MLP":
            self._agent_encoder = SequenceEncoderMLP(
                params.state_dim,
                params.hidden_dim,
                params.num_hidden_layers,
                num_steps,
                params.is_mlp_residual,
            )
        elif params.sequence_encoder_type == "LSTM":
            self._agent_encoder = SequenceEncoderLSTM(
                params.state_dim, params.hidden_dim
            )
        elif params.sequence_encoder_type == "maskedLSTM":
            self._agent_encoder = SequenceEncoderMaskedLSTM(
                params.state_dim, params.hidden_dim
            )

        if params.interaction_type == "Attention" or params.interaction_type == "MAB":
            self._interaction = MAB(
                params.hidden_dim, params.num_attention_heads, params.num_blocks
            )
        elif (
            params.interaction_type == "ContextGating"
            or params.interaction_type == "MCG"
        ):
            self._interaction = MCG(
                params.hidden_dim,
                params.mcg_dim_expansion,
                params.mcg_num_layers,
                params.num_blocks,
                params.is_mlp_residual,
            )
        elif params.interaction_type == "Hybrid" or params.interaction_type == "MHB":
            self._interaction = MHB(
                params.hidden_dim,
                params.num_attention_heads,
                params.mcg_dim_expansion,
                params.mcg_num_layers,
                params.num_blocks,
                params.is_mlp_residual,
            )
        else:
            self._interaction = lambda x, *args, **kwargs: x
        self._output_layer = nn.Linear(params.hidden_dim, self.latent_dim)

    def encode_agents(self, x: torch.Tensor, mask_x: torch.Tensor, *args, **kwargs):
        raise NotImplementedError

    def forward(
        self,
        x: torch.Tensor,
        mask_x: torch.Tensor,
        encoded_absolute: torch.Tensor,
        encoded_map: torch.Tensor,
        mask_map: torch.Tensor,
        y: Optional[torch.Tensor] = None,
        mask_y: Optional[torch.Tensor] = None,
        x_ego: Optional[torch.Tensor] = None,
        y_ego: Optional[torch.Tensor] = None,
        offset: Optional[torch.Tensor] = None,
        risk_level: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        """Forward function that encodes input tensors into an output tensor of dimension
        latent_dim.

        Args:
            x: (batch_size, num_agents, num_steps, state_dim) tensor of history
            mask_x: (batch_size, num_agents, num_steps) tensor of bool mask
            encoded_absolute: (batch_size, num_agents, feature_size) tensor of the encoded absolute agent positions
            encoded_map: (batch_size, num_objects, map_feature_dim) tensor of encoded map objects
            mask_map: (batch_size, num_objects) tensor of bool mask
            y (optional): (batch_size, num_agents, num_steps_future, state_dim) tensor of future trajectory.
            mask_y (optional): (batch_size, num_agents, num_steps_future) tensor of bool mask. Defaults to None.
            x_ego: (batch_size, 1, num_steps, state_dim) ego history
            y_ego: (batch_size, 1, num_steps_future, state_dim) ego future
            offset (optional): (batch_size, num_agents, state_dim) offset position from ego.
            risk_level (optional): (batch_size, num_agents) tensor of risk levels desired for future
                trajectories. Defaults to None.

        Returns:
            (batch_size, num_agents, latent_dim) output tensor
        """
        h_agents = self.encode_agents(
            x=x,
            mask_x=mask_x,
            y=y,
            mask_y=mask_y,
            x_ego=x_ego,
            y_ego=y_ego,
            offset=offset,
            risk_level=risk_level,
        )
        mask_agent = mask_x.any(-1)
        h_agents = self._interaction(
            h_agents, mask_agent, encoded_absolute, encoded_map, mask_map
        )

        return self._output_layer(h_agents)


class BiasedEncoderNN(BaseEncoderNN):
    """Biased encoder neural network that encodes past info and auxiliary input
    into a biased distribution over the latent space.

     Args:
        params: dataclass defining the necessary parameters
        num_steps: length of the input sequence
    """

    def __init__(
        self,
        params: CVAEParams,
        latent_dim: int,
        num_steps: int,
    ) -> None:
        super().__init__(params, latent_dim, num_steps)
        self.condition_on_ego_future = params.condition_on_ego_future
        if params.sequence_encoder_type == "MLP":
            self._ego_encoder = SequenceEncoderMLP(
                params.state_dim,
                params.hidden_dim,
                params.num_hidden_layers,
                params.num_steps
                + params.num_steps_future * self.condition_on_ego_future,
                params.is_mlp_residual,
            )
        elif params.sequence_encoder_type == "LSTM":
            self._ego_encoder = SequenceEncoderLSTM(params.state_dim, params.hidden_dim)
        elif params.sequence_encoder_type == "maskedLSTM":
            self._ego_encoder = SequenceEncoderMaskedLSTM(
                params.state_dim, params.hidden_dim
            )

        self._auxiliary_encode = nn.Linear(
            params.hidden_dim + 1 + params.hidden_dim, params.hidden_dim
        )

    def biased_parameters(self, recurse: bool = True):
        """Get the parameters to be optimized when training to bias."""
        yield from self.parameters(recurse)

    def encode_agents(
        self,
        x: torch.Tensor,
        mask_x: torch.Tensor,
        *,
        x_ego: torch.Tensor,
        y_ego: torch.Tensor,
        offset: torch.Tensor,
        risk_level: torch.Tensor,
        **kwargs,
    ):
        """Encode agent input and auxiliary input into a feature vector.

        Args:
            x: (batch_size, num_agents, num_steps, state_dim) tensor of history
            mask_x: (batch_size, num_agents, num_steps) tensor of bool mask
            x_ego: (batch_size, 1, num_steps, state_dim) ego history
            y_ego: (batch_size, 1, num_steps_future, state_dim) ego future
            offset: (batch_size, num_agents, state_dim) offset position from ego.
            risk_level: (batch_size, num_agents) tensor of risk levels desired for future
                trajectories. Defaults to None.
        Returns:
            (batch_size, latent_dim) output tensor
        """

        if self.condition_on_ego_future:
            ego_tensor = torch.cat([x_ego, y_ego], dim=-2)
        else:
            ego_tensor = x_ego

        risk_feature = ((risk_level - 0.5) * 10).exp().unsqueeze(-1)
        mask_ego = torch.ones(
            ego_tensor.shape[0],
            offset.shape[1],
            ego_tensor.shape[2],
            device=ego_tensor.device,
        )
        batch_size, n_agents, dynamic_state_dim = offset.shape
        state_dim = ego_tensor.shape[-1]
        extended_offset = torch.cat(
            (
                offset,
                torch.zeros(
                    batch_size,
                    n_agents,
                    state_dim - dynamic_state_dim,
                    device=offset.device,
                ),
            ),
            dim=-1,
        ).unsqueeze(-2)
        if extended_offset.shape[1] > 1:
            ego_encoded = self._ego_encoder(
                ego_tensor + extended_offset[:, :1] - extended_offset, mask_ego
            )
        else:
            ego_encoded = self._ego_encoder(ego_tensor - extended_offset, mask_ego)
        auxiliary_input = torch.cat((risk_feature, ego_encoded), -1)

        h_agents = self._agent_encoder(x, mask_x)
        h_agents = torch.cat([h_agents, auxiliary_input], dim=-1)
        h_agents = self._auxiliary_encode(h_agents)

        return h_agents


class InferenceEncoderNN(BaseEncoderNN):
    """Inference encoder neural network that encodes past info into the
    inference distribution over the latent space.

    Args:
        params: dataclass defining the necessary parameters
        num_steps: length of the input sequence
    """

    def biaser_parameters(self, recurse: bool = True):
        yield from []

    def encode_agents(self, x: torch.Tensor, mask_x: torch.Tensor, *args, **kwargs):
        h_agents = self._agent_encoder(x, mask_x)
        return h_agents


class FutureEncoderNN(BaseEncoderNN):
    """Future encoder neural network that encodes past and future info into the
    future-conditioned distribution over the latent space.
    The future is not available at test time, this is only used for training.

    Args:
        params: dataclass defining the necessary parameters
        num_steps: length of the input sequence

    """

    def biaser_parameters(self, recurse: bool = True):
        """The future encoder is not optimized when training to bias."""
        yield from []

    def encode_agents(
        self,
        x: torch.Tensor,
        mask_x: torch.Tensor,
        *,
        y: torch.Tensor,
        mask_y: torch.Tensor,
        **kwargs,
    ):
        """Encode agent input and future input into a feature vector.
        Args:
            x: (batch_size, num_agents, num_steps, state_dim) tensor of trajectory history
            mask_x: (batch_size, num_agents, num_steps) tensor of bool mask
            y: (batch_size, num_agents, num_steps_future, state_dim) future trajectory
            mask_y: (batch_size, num_agents, num_steps_future) tensor of bool mask
        """
        mask_traj = torch.cat([mask_x, mask_y], dim=-1)
        h_agents = self._agent_encoder(torch.cat([x, y], dim=-2), mask_traj)
        return h_agents


class CVAEEncoder(nn.Module):
    """Encoder architecture for conditional variational autoencoder

    Args:
        model: encoder neural network that transforms input tensors to an unsplitted latent output
        latent_distribution_creator: Class that creates a latent distribution class for the latent space.
    """

    def __init__(
        self,
        model: BaseEncoderNN,
        latent_distribution_creator,
    ) -> None:
        super().__init__()
        self._model = model
        self.latent_dim = model.latent_dim
        self._latent_distribution_creator = latent_distribution_creator

    def biased_parameters(self, recurse: bool = True):
        yield from self._model.biased_parameters(recurse)

    def forward(
        self,
        x: torch.Tensor,
        mask_x: torch.Tensor,
        encoded_absolute: torch.Tensor,
        encoded_map: torch.Tensor,
        mask_map: torch.Tensor,
        y: Optional[torch.Tensor] = None,
        mask_y: Optional[torch.Tensor] = None,
        x_ego: Optional[torch.Tensor] = None,
        y_ego: Optional[torch.Tensor] = None,
        offset: Optional[torch.Tensor] = None,
        risk_level: Optional[torch.Tensor] = None,
    ) -> AbstractLatentDistribution:
        """Forward function that encodes input tensors into an output tensor of dimension
        latent_dim.

        Args:
            x: (batch_size, num_agents, num_steps, state_dim) tensor of history
            mask_x: (batch_size, num_agents, num_steps) tensor of bool mask
            encoded_absolute: (batch_size, num_agents, feature_size) tensor of the encoded absolute agent positions
            encoded_map: (batch_size, num_objects, map_feature_dim) tensor of encoded map objects
            mask_map: (batch_size, num_objects) tensor of bool mask
            y (optional): (batch_size, num_agents, num_steps_future, state_dim) tensor of future trajectory.
            mask_y (optional): (batch_size, num_agents, num_steps_future) tensor of bool mask. Defaults to None.
            x_ego (optional): (batch_size, 1, num_steps, state_dim) ego history
            y_ego (optional): (batch_size, 1, num_steps_future, state_dim) ego future
            offset (optional): (batch_size, num_agents, state_dim) offset position from ego.
            risk_level (optional): (batch_size, num_agents) tensor of risk levels desired for future
                trajectories. Defaults to None.

        Returns:
            Latent distribution representing the posterior over the latent variables given the input observations.
        """

        latent_output = self._model(
            x=x,
            mask_x=mask_x,
            encoded_absolute=encoded_absolute,
            encoded_map=encoded_map,
            mask_map=mask_map,
            y=y,
            mask_y=mask_y,
            x_ego=x_ego,
            y_ego=y_ego,
            offset=offset,
            risk_level=risk_level,
        )

        latent_distribution = self._latent_distribution_creator(latent_output)

        return latent_distribution