Spaces:
Running
Running
File size: 35,803 Bytes
5769ee4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 |
from warnings import warn
from typing import Callable, Optional, Tuple, Union
import torch
import torch.nn as nn
from einops import rearrange, repeat
from risk_biased.models.map_encoder import MapEncoderNN
from risk_biased.models.mlp import MLP
from risk_biased.models.cvae_params import CVAEParams
from risk_biased.models.cvae_encoders import (
AbstractLatentDistribution,
CVAEEncoder,
BiasedEncoderNN,
FutureEncoderNN,
InferenceEncoderNN,
)
from risk_biased.models.cvae_decoder import (
CVAEAccelerationDecoder,
CVAEParametrizedDecoder,
DecoderNN,
)
from risk_biased.utils.cost import BaseCostTorch, get_cost
from risk_biased.utils.loss import (
reconstruction_loss,
risk_loss_function,
)
from risk_biased.models.latent_distributions import (
GaussianLatentDistribution,
QuantizedDistributionCreator,
AbstractLatentDistribution,
)
from risk_biased.utils.metrics import FDE, minFDE
from risk_biased.utils.risk import AbstractMonteCarloRiskEstimator
class InferenceBiasedCVAE(nn.Module):
"""CVAE with a biased encoder module for risk-biased trajectory forecasting.
Args:
absolute_encoder: encoder model for the absolute positions of the agents
map_encoder: encoder model for map objects
biased_encoder: biased encoder that uses past and auxiliary input,
inference_encoder: inference encoder that uses only past,
decoder: CVAE decoder model
prior_distribution: prior distribution for the latent space.
"""
def __init__(
self,
absolute_encoder: MLP,
map_encoder: MapEncoderNN,
biased_encoder: CVAEEncoder,
inference_encoder: CVAEEncoder,
decoder: CVAEAccelerationDecoder,
prior_distribution: AbstractLatentDistribution,
) -> None:
super().__init__()
self.biased_encoder = biased_encoder
self.inference_encoder = inference_encoder
self.decoder = decoder
self.map_encoder = map_encoder
self.absolute_encoder = absolute_encoder
self.prior_distribution = prior_distribution
def cvae_parameters(self, recurse: bool = True):
"""Define an iterator over all the parameters related to the cvae."""
yield from self.absolute_encoder.parameters(recurse=recurse)
yield from self.map_encoder.parameters(recurse=recurse)
yield from self.inference_encoder.parameters(recurse=recurse)
yield from self.decoder.parameters(recurse=recurse)
def biased_parameters(self, recurse: bool = True):
"""Define an iterator over only the parameters related to the biaser."""
yield from self.biased_encoder.biased_parameters(recurse=recurse)
def forward(
self,
x: torch.Tensor,
mask_x: torch.Tensor,
map: torch.Tensor,
mask_map: torch.Tensor,
offset: torch.Tensor,
*,
x_ego: Optional[torch.Tensor] = None,
y_ego: Optional[torch.Tensor] = None,
risk_level: Optional[torch.Tensor] = None,
n_samples: int = 0,
) -> Tuple[torch.Tensor, AbstractLatentDistribution]:
"""Forward function that outputs a noisy reconstruction of y and parameters of latent
posterior distribution
Args:
x: (batch_size, num_agents, num_steps, state_dim) tensor of history
mask_x: (batch_size, num_agents, num_steps) tensor of bool mask
map: (batch_size, num_objects, object_sequence_length, map_feature_dim) tensor of encoded map objects
mask_map: (batch_size, num_objects, object_sequence_length) tensor of bool mask
offset : (batch_size, num_agents, state_dim) offset position from ego. Defaults to None.
x_ego: (batch_size, 1, num_steps, state_dim) ego history
y_ego: (batch_size, 1, num_steps_future, state_dim) ego future
risk_level (optional): (batch_size, num_agents) tensor of risk levels desired for future
trajectories. Defaults to None.
n_samples (optional): number of samples to predict, (if 0 one sample with no extra
dimension). Defaults to 0.
Returns:
noisy reconstruction y of size (batch_size, num_agents, num_steps_future, state_dim), as well as
weights of the samples and the latent distribution.
No bias is applied to encoder without offset or risk.
"""
encoded_map = self.map_encoder(map, mask_map)
mask_map = mask_map.any(-1)
encoded_absolute = self.absolute_encoder(offset)
if risk_level is not None:
biased_latent_distribution = self.biased_encoder(
x,
mask_x,
encoded_absolute,
encoded_map,
mask_map,
x_ego=x_ego,
y_ego=y_ego,
offset=offset,
risk_level=risk_level,
)
inference_latent_distribution = self.inference_encoder(
x,
mask_x,
encoded_absolute,
encoded_map,
mask_map,
)
latent_distribution = inference_latent_distribution.average(
biased_latent_distribution, risk_level.unsqueeze(-1)
)
else:
latent_distribution = self.inference_encoder(
x,
mask_x,
encoded_absolute,
encoded_map,
mask_map,
)
z_sample, weights = latent_distribution.sample(n_samples=n_samples)
mask_z = mask_x.any(-1)
y_sample = self.decoder(
z_sample, mask_z, x, mask_x, encoded_absolute, encoded_map, mask_map, offset
)
return y_sample, weights, latent_distribution
def decode(
self,
z_samples: torch.Tensor,
mask_z: torch.Tensor,
x: torch.Tensor,
mask_x: torch.Tensor,
map: torch.Tensor,
mask_map: torch.Tensor,
offset: torch.Tensor,
):
"""Returns predicted y values conditionned on z_samples and the other observations.
Args:
z_samples: (batch_size, num_agents, (n_samples), latent_dim) tensor of latent samples
mask_z: (batch_size, num_agents) bool mask
x: (batch_size, num_agents, num_steps, state_dim) tensor of history
mask_x: (batch_size, num_agents, num_steps) tensor of bool mask
map: (batch_size, num_objects, object_sequence_length, map_feature_dim) tensor of encoded map objects
mask_map: (batch_size, num_objects, object_sequence_length) tensor True where map features are good False where it is padding
offset : (batch_size, num_agents, state_dim) offset position from ego.
"""
encoded_map = self.map_encoder(map, mask_map)
mask_map = mask_map.any(-1)
encoded_absolute = self.absolute_encoder(offset)
return self.decoder(
z_samples=z_samples,
mask_z=mask_z,
x=x,
mask_x=mask_x,
encoded_absolute=encoded_absolute,
encoded_map=encoded_map,
mask_map=mask_map,
offset=offset,
)
class TrainingBiasedCVAE(InferenceBiasedCVAE):
"""CVAE with a biased encoder module for risk-biased trajectory forecasting.
This module is as a non-sampling-based version of BiasedLatentCVAE.
Args:
absolute_encoder: encoder model for the absolute positions of the agents
map_encoder: encoder model for map objects
biased_encoder: biased encoder that uses past and auxiliary input,
inference_encoder: inference encoder that uses only past,
decoder: CVAE decoder model
future_encoder: training encoder that uses past and future,
cost_function: cost function used to compute the risk objective
risk_estimator: risk estimator used to compute the risk objective
prior_distribution: prior distribution for the latent space.
training_mode (optional): set to "cvae" to train the unbiased model, set to "bias" to train
the biased encoder. Defaults to "cvae".
latent_regularization (optional): regularization term for the latent space. Defaults to 0.
risk_assymetry_factor (optional): risk asymmetry factor used to compute the risk objective avoiding underestimations.
"""
def __init__(
self,
absolute_encoder: MLP,
map_encoder: MapEncoderNN,
biased_encoder: CVAEEncoder,
inference_encoder: CVAEEncoder,
decoder: CVAEAccelerationDecoder,
future_encoder: CVAEEncoder,
cost_function: BaseCostTorch,
risk_estimator: AbstractMonteCarloRiskEstimator,
prior_distribution: AbstractLatentDistribution,
training_mode: str = "cvae",
latent_regularization: float = 0.0,
risk_assymetry_factor: float = 100.0,
) -> None:
super().__init__(
absolute_encoder,
map_encoder,
biased_encoder,
inference_encoder,
decoder,
prior_distribution,
)
self.future_encoder = future_encoder
self._cost = cost_function
self._risk = risk_estimator
self.set_training_mode(training_mode)
self.regularization_factor = latent_regularization
self.risk_assymetry_factor = risk_assymetry_factor
def cvae_parameters(self, recurse: bool = True):
yield from super().cvae_parameters(recurse)
yield from self.future_encoder.parameters(recurse)
def get_parameters(self, recurse: bool = True):
"""Returns a list of two parameter iterators: cvae and encoder only."""
return [
self.cvae_parameters(recurse),
self.biased_parameters(recurse),
]
def set_training_mode(self, training_mode: str) -> None:
"""
Change the training mode (get_loss function will be different depending on the mode).
Warning: This does not freeze the decoder because the gradient must pass through it.
The decoder should be frozen at the optimizer level when changing mode.
"""
assert training_mode in ["cvae", "bias"]
self.training_mode = training_mode
if training_mode == "cvae":
self.get_loss = self.get_loss_cvae
else:
self.get_loss = self.get_loss_biased
def forward_future(
self,
x: torch.Tensor,
mask_x: torch.Tensor,
map: torch.Tensor,
mask_map: torch.Tensor,
y: torch.Tensor,
mask_y: torch.Tensor,
offset: torch.Tensor,
return_inference: bool = False,
) -> Union[
Tuple[torch.Tensor, AbstractLatentDistribution],
Tuple[torch.Tensor, AbstractLatentDistribution, AbstractLatentDistribution],
]:
"""Forward function that outputs a noisy reconstruction of y and parameters of latent
posterior distribution
Args:
x: (batch_size, num_agents, num_steps, state_dim) tensor of history
mask_x: (batch_size, num_agents, num_steps) tensor of bool mask
map: (batch_size, num_objects, object_sequence_length, map_feature_dim) tensor of encoded map objects
mask_map: (batch_size, num_objects, object_sequence_length) tensor of bool mask
y: (batch_size, num_agents, num_steps_future, state_dim) tensor of future trajectory.
mask_y: (batch_size, num_agents, num_steps_future) tensor of bool mask.
offset: (batch_size, num_agents, state_dim) offset position from ego.
return_inference: (optional) Set to true if z_mean_inference and z_log_std_inference should be returned, Defaults to None.
Returns:
noisy reconstruction y of size (batch_size, num_agents, num_steps_future, state_dim), and the
distribution of the latent posterior, as well as, optionally, the distribution of the latent inference posterior.
"""
encoded_map = self.map_encoder(map, mask_map)
mask_map = mask_map.any(-1)
encoded_absolute = self.absolute_encoder(offset)
latent_distribution = self.future_encoder(
x,
mask_x,
y=y,
mask_y=mask_y,
encoded_absolute=encoded_absolute,
encoded_map=encoded_map,
mask_map=mask_map,
)
z_sample, weights = latent_distribution.sample()
mask_z = mask_x.any(-1)
y_sample = self.decoder(
z_sample,
mask_z,
x,
mask_x,
encoded_absolute,
encoded_map,
mask_map,
offset,
)
if return_inference:
inference_distribution = self.inference_encoder(
x,
mask_x,
encoded_absolute,
encoded_map,
mask_map,
)
return (
y_sample,
latent_distribution,
inference_distribution,
)
else:
return y_sample, latent_distribution
def get_loss_cvae(
self,
x: torch.Tensor,
mask_x: torch.Tensor,
map: torch.Tensor,
mask_map: torch.Tensor,
y: torch.Tensor,
*,
mask_y: torch.Tensor,
mask_loss: torch.Tensor,
offset: torch.Tensor,
unnormalizer: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
kl_weight: float,
kl_threshold: float,
**kwargs,
) -> Tuple[torch.Tensor, dict]:
"""Compute and return risk-biased CVAE loss averaged over batch and sequence time steps,
along with desired loss-related metrics for logging
Args:
x: (batch_size, num_agents, num_steps, state_dim) tensor of history
mask_x: (batch_size, num_agents, num_steps) tensor of bool mask
map: (batch_size, num_objects, object_sequence_length, map_feature_dim) tensor of encoded map objects
mask_map: (batch_size, num_objects, object_sequence_length) tensor True where map features are good False where it is padding
y: (batch_size, num_agents, num_steps_future, state_dim) tensor of future trajectory.
mask_y: (batch_size, num_agents, num_steps_future) tensor of bool mask.
mask_loss: (batch_size, num_agents, num_steps_future) tensor of bool mask set to True where the loss
should be computed and to False where it shouldn't
offset : (batch_size, num_agents, state_dim) offset position from ego.
unnormalizer: function that takes in a trajectory and an offset and that outputs the
unnormalized trajectory
kl_weight: weight to apply to the KL loss (normal value is 1.0, larger values can be
used for disentanglement)
kl_threshold: minimum float value threshold applied to the KL loss
Returns:
torch.Tensor: (1,) loss tensor
dict: dict that contains loss-related metrics to be logged
"""
log_dict = dict()
if not mask_loss.any():
warn("A batch is dropped because the whole loss is masked.")
return torch.zeros(1, requires_grad=True), {}
mask_z = mask_x.any(-1)
# sum_mask_z = mask_z.float().sum().clamp_min(1)
(y_sample, latent_distribution, inference_distribution) = self.forward_future(
x,
mask_x,
map,
mask_map,
y,
mask_y,
offset,
return_inference=True,
)
# sum_mask_z *= latent_distribution.mu.shape[-1]
# log_dict["latent/abs_mean"] = (
# (latent_distribution.mu.abs() * mask_z.unsqueeze(-1).float()).sum() / sum_mask_z
# ).item()
# log_dict["latent/std"] = (
# (latent_distribution.logvar.exp() * mask_z.unsqueeze(-1).float()).sum() / sum_mask_z
# ).item()
log_dict["fde/encoded"] = FDE(
unnormalizer(y_sample, offset), unnormalizer(y, offset), mask_loss
).item()
rec_loss = reconstruction_loss(y_sample, y, mask_loss)
kl_loss = latent_distribution.kl_loss(
inference_distribution,
kl_threshold,
mask_z,
)
# self.prior_distribution.to(latent_distribution.mu.device)
kl_loss_prior = latent_distribution.kl_loss(
self.prior_distribution,
kl_threshold,
mask_z,
)
sampling_loss = latent_distribution.sampling_loss()
log_dict["loss/rec"] = rec_loss.item()
log_dict["loss/kl"] = kl_loss.item()
log_dict["loss/kl_prior"] = kl_loss_prior.item()
log_dict["loss/sampling"] = sampling_loss.item()
log_dict.update(latent_distribution.log_dict("future"))
log_dict.update(inference_distribution.log_dict("inference"))
loss = (
rec_loss
+ kl_weight * kl_loss
+ self.regularization_factor * kl_loss_prior
+ sampling_loss
)
log_dict["loss/total"] = loss.item()
return loss, log_dict
def get_loss_biased(
self,
x: torch.Tensor,
mask_x: torch.Tensor,
map: torch.Tensor,
mask_map: torch.Tensor,
y: torch.Tensor,
*,
mask_loss: torch.Tensor,
offset: torch.Tensor,
unnormalizer: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
risk_level: torch.Tensor,
x_ego: torch.Tensor,
y_ego: torch.Tensor,
kl_weight: float,
kl_threshold: float,
risk_weight: float,
n_samples_risk: int,
n_samples_biased: int,
dt: float,
**kwargs,
) -> Tuple[torch.Tensor, dict]:
"""Compute and return risk-biased CVAE loss averaged over batch and sequence time steps,
along with desired loss-related metrics for logging
Args:
x: (batch_size, num_agents, num_steps, state_dim) tensor of history
mask_x: (batch_size, num_agents, num_steps) tensor of bool mask
map: (batch_size, num_objects, object_sequence_length, map_feature_dim) tensor of encoded map objects
mask_map: (batch_size, num_objects, object_sequence_length) tensor True where map features are good False where it is padding
y: (batch_size, num_agents, num_steps_future, state_dim) tensor of future trajectory.
mask_loss: (batch_size, num_agents, num_steps_future) tensor of bool mask set to True where the loss
should be computed and to False where it shouldn't
offset : (batch_size, num_agents, state_dim) offset position from ego.
unnormalizer: function that takes in a trajectory and an offset and that outputs the
unnormalized trajectory
risk_level: (batch_size, num_agents) tensor of risk levels desired for future trajectories
x_ego: (batch_size, 1, num_steps, state_dim) tensor of ego history
y_ego: (batch_size, 1, num_steps_future, state_dim) tensor of ego future trajectory
kl_weight: weight to apply to the KL loss (normal value is 1.0, larger values can be
used for disentanglement)
kl_threshold: minimum float value threshold applied to the KL loss
risk_weight: weight to apply to the risk loss (beta parameter in our document)
n_samples_risk: number of sample to use for Monte-Carlo estimation of the risk using the unbiased distribution
n_samples_biased: number of sample to use for Monte-Carlo estimation of the risk using the biased distribution
dt: time step in trajectories
Returns:
torch.Tensor: (1,) loss tensor
dict: dict that contains loss-related metrics to be logged
"""
log_dict = dict()
if not mask_loss.any():
warn("A batch is dropped because the whole loss is masked.")
return torch.zeros(1, requires_grad=True), {}
mask_z = mask_x.any(-1)
# Computing unbiased samples
n_samples_risk = max(1, n_samples_risk)
n_samples_biased = max(1, n_samples_biased)
cost = []
weights = []
pack_size = min(n_samples_risk, n_samples_biased)
with torch.no_grad():
encoded_map = self.map_encoder(map, mask_map)
mask_map = mask_map.any(-1)
encoded_absolute = self.absolute_encoder(offset)
inference_distribution = self.inference_encoder(
x,
mask_x,
encoded_absolute,
encoded_map,
mask_map,
)
for _ in range(n_samples_risk // pack_size):
z_samples, w = inference_distribution.sample(
n_samples=pack_size,
)
y_samples = self.decoder(
z_samples=z_samples,
mask_z=mask_z,
x=x,
mask_x=mask_x,
encoded_absolute=encoded_absolute,
encoded_map=encoded_map,
mask_map=mask_map,
offset=offset,
)
mask_loss_samples = repeat(mask_loss, "b a t -> b a s t", s=pack_size)
# Computing unbiased cost
cost.append(
get_cost(
self._cost,
x,
y_samples,
offset,
x_ego,
y_ego,
dt,
unnormalizer,
mask_loss_samples,
)
)
weights.append(w)
cost = torch.cat(cost, 2)
weights = torch.cat(weights, 2)
risk_cost = self._risk(risk_level, cost, weights)
log_dict["fde/prior"] = FDE(
unnormalizer(y_samples, offset),
unnormalizer(y, offset).unsqueeze(-3),
mask_loss_samples,
).item()
mask_cost_samples = repeat(mask_z, "b a -> b a s", s=n_samples_risk)
mean_cost = (cost * mask_cost_samples.float() * weights).sum(2) / (
(mask_cost_samples.float() * weights).sum(2).clamp_min(1)
)
log_dict["cost/mean"] = (
(mean_cost * mask_loss.any(-1).float()).sum()
/ (mask_loss.any(-1).float().sum())
).item()
# Computing biased latent parameters
biased_distribution = self.biased_encoder(
x,
mask_x,
encoded_absolute.detach(),
encoded_map.detach(),
mask_map,
risk_level=risk_level,
x_ego=x_ego,
y_ego=y_ego,
offset=offset,
)
biased_distribution = inference_distribution.average(
biased_distribution, risk_level.unsqueeze(-1)
)
# sum_mask_z = mask_z.float().sum().clamp_min(1)* biased_distribution.mu.shape[-1]
# log_dict["latent/abs_mean_biased"] = (
# (biased_distribution.mu.abs() * mask_z.unsqueeze(-1).float()).sum() / sum_mask_z
# ).item()
# log_dict["latent/var_biased"] = (
# (biased_distribution.logvar.exp() * mask_z.unsqueeze(-1).float()).sum() / sum_mask_z
# ).item()
# Computing biased samples
z_biased_samples, weights = biased_distribution.sample(
n_samples=n_samples_biased
)
mask_z_samples = repeat(mask_z, "b a -> b a s ()", s=n_samples_biased)
log_dict["latent/abs_samples_biased"] = (
(z_biased_samples.abs() * mask_z_samples.float()).sum()
/ (mask_z_samples.float().sum())
).item()
y_biased_samples = self.decoder(
z_samples=z_biased_samples,
mask_z=mask_z,
x=x,
mask_x=mask_x,
encoded_absolute=encoded_absolute,
encoded_map=encoded_map,
mask_map=mask_map,
offset=offset,
)
log_dict["fde/prior_biased"] = FDE(
unnormalizer(y_biased_samples, offset),
unnormalizer(y, offset).unsqueeze(2),
mask_loss=mask_loss_samples,
).item()
# Computing biased cost
biased_cost = get_cost(
self._cost,
x,
y_biased_samples,
offset,
x_ego,
y_ego,
dt,
unnormalizer,
mask_loss_samples,
)
mask_cost_samples = mask_z_samples.squeeze(-1)
mean_biased_cost = (biased_cost * mask_cost_samples.float() * weights).sum(
2
) / ((mask_cost_samples.float() * weights).sum(2).clamp_min(1))
log_dict["cost/mean_biased"] = (
(mean_biased_cost * mask_loss.any(-1).float()).sum()
/ (mask_loss.any(-1).float().sum())
).item()
log_dict["cost/risk"] = (
(risk_cost * mask_loss.any(-1).float()).sum()
/ (mask_loss.any(-1).float().sum())
).item()
# Computing loss between risk and biased cost
risk_loss = risk_loss_function(
mean_biased_cost,
risk_cost.detach(),
mask_loss.any(-1),
self.risk_assymetry_factor,
)
log_dict["loss/risk"] = risk_loss.item()
# Computing KL loss between prior and biased latent
kl_loss = inference_distribution.kl_loss(
biased_distribution,
kl_threshold,
mask_z=mask_z,
)
log_dict["loss/kl"] = kl_loss.item()
loss = risk_weight * risk_loss + kl_weight * kl_loss
log_dict["loss/total"] = loss.item()
log_dict["loss/risk_weight"] = risk_weight
log_dict.update(inference_distribution.log_dict("inference"))
log_dict.update(biased_distribution.log_dict("biased"))
return loss, log_dict
def get_prediction_accuracy(
self,
x: torch.Tensor,
mask_x: torch.Tensor,
map: torch.Tensor,
mask_map: torch.Tensor,
y: torch.Tensor,
mask_loss: torch.Tensor,
x_ego: torch.Tensor,
y_ego: torch.Tensor,
offset: torch.Tensor,
unnormalizer: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
risk_level: torch.Tensor,
num_samples_min_fde: int = 0,
) -> dict:
"""
A function that calls the predict method and returns a dict that contains prediction
metrics, which measure accuracy with respect to ground-truth future trajectory y
Args:
x: (batch_size, num_agents, num_steps, state_dim) tensor of history
mask_x: (batch_size, num_agents, num_steps) tensor of bool mask
map: (batch_size, num_objects, object_sequence_length, map_feature_dim) tensor of encoded map objects
mask_map: (batch_size, num_objects, object_sequence_length) tensor True where map features are good False where it is padding
y: (batch_size, num_agents, num_steps_future, state_dim) tensor of future trajectory.
mask_loss: (batch_size, num_agents, num_steps_future) tensor of bool mask set to True where the loss
should be computed and to False where it shouldn't
x_ego: (batch_size, 1, num_steps, state_dim) tensor of ego history
y_ego: (batch_size, 1, num_steps_future, state_dim) tensor of ego future trajectory
offset: (batch_size, num_agents, state_dim) offset position from ego
unnormalizer: function that takes in a trajectory and an offset and that outputs the
unnormalized trajectory
risk_level: (batch_size, num_agents) tensor of risk levels desired for future trajectories
num_samples_min_fde: number of samples to use when computing the minimum final displacement error
Returns:
dict: dict that contains prediction-related metrics to be logged
"""
log_dict = dict()
with torch.no_grad():
batch_size = x.shape[0]
beg = 0
y_predict = []
# Limit the batch size so the num_samples_min_fde value does not impact the memory usage
for i in range(batch_size // num_samples_min_fde + 1):
sub_batch_size = num_samples_min_fde
end = beg + sub_batch_size
y_predict.append(
unnormalizer(
self.forward(
x=x[beg:end],
mask_x=mask_x[beg:end],
map=map[beg:end],
mask_map=mask_map[beg:end],
offset=offset[beg:end],
x_ego=x_ego[beg:end],
y_ego=y_ego[beg:end],
risk_level=None,
n_samples=num_samples_min_fde,
)[0],
offset[beg:end],
)
)
beg = end
if beg >= batch_size:
break
# Limit the batch size so the num_samples_min_fde value does not impact the memory usage
if risk_level is not None:
y_predict_biased = []
beg = 0
for i in range(batch_size // num_samples_min_fde + 1):
sub_batch_size = num_samples_min_fde
end = beg + sub_batch_size
y_predict_biased.append(
unnormalizer(
self.forward(
x=x[beg:end],
mask_x=mask_x[beg:end],
map=map[beg:end],
mask_map=mask_map[beg:end],
offset=offset[beg:end],
x_ego=x_ego[beg:end],
y_ego=y_ego[beg:end],
risk_level=risk_level[beg:end],
n_samples=num_samples_min_fde,
)[0],
offset[beg:end],
)
)
beg = end
if beg >= batch_size:
break
y_predict_biased = torch.cat(y_predict_biased, 0)
if num_samples_min_fde > 0:
repeated_mask_loss = repeat(
mask_loss, "b a t -> b a samples t", samples=num_samples_min_fde
)
log_dict["fde/prior_biased"] = FDE(
y_predict_biased, y.unsqueeze(-3), mask_loss=repeated_mask_loss
).item()
log_dict["minfde/prior_biased"] = minFDE(
y_predict_biased, y.unsqueeze(-3), mask_loss=repeated_mask_loss
).item()
else:
log_dict["fde/prior_biased"] = FDE(
y_predict_biased, y, mask_loss=mask_loss
).item()
y_predict = torch.cat(y_predict, 0)
y_unnormalized = unnormalizer(y, offset)
if num_samples_min_fde > 0:
repeated_mask_loss = repeat(
mask_loss, "b a t -> b a samples t", samples=num_samples_min_fde
)
log_dict["fde/prior"] = FDE(
y_predict, y_unnormalized.unsqueeze(-3), mask_loss=repeated_mask_loss
).item()
log_dict["minfde/prior"] = minFDE(
y_predict, y_unnormalized.unsqueeze(-3), mask_loss=repeated_mask_loss
).item()
else:
log_dict["fde/prior"] = FDE(
y_predict, y_unnormalized, mask_loss=mask_loss
).item()
return log_dict
def cvae_factory(
params: CVAEParams,
cost_function: BaseCostTorch,
risk_estimator: AbstractMonteCarloRiskEstimator,
training_mode: str = "cvae",
):
"""Biased CVAE with a biased MLP encoder and an MLP decoder
Args:
params: dataclass defining the necessary parameters
cost_function: cost function used to compute the risk objective
risk_estimator: risk estimator used to compute the risk objective
training_mode: "inference", "cvae" or "bias" set what is the training mode
latent_distribution: "gaussian" or "quantized" set the latent distribution
"""
absolute_encoder_nn = MLP(
params.dynamic_state_dim,
params.hidden_dim,
params.hidden_dim,
params.num_hidden_layers,
params.is_mlp_residual,
)
map_encoder_nn = MapEncoderNN(params)
if params.latent_distribution == "gaussian":
latent_distribution_creator = GaussianLatentDistribution
prior_distribution = GaussianLatentDistribution(
torch.zeros(1, 1, 2 * params.latent_dim)
)
future_encoder_latent_dim = 2 * params.latent_dim
inference_encoder_latent_dim = 2 * params.latent_dim
biased_encoder_latent_dim = 2 * params.latent_dim
elif params.latent_distribution == "quantized":
latent_distribution_creator = QuantizedDistributionCreator(
params.latent_dim, params.num_vq
)
prior_distribution = latent_distribution_creator(
torch.zeros(1, 1, params.num_vq)
)
future_encoder_latent_dim = params.latent_dim
inference_encoder_latent_dim = params.num_vq
biased_encoder_latent_dim = params.num_vq
biased_encoder_nn = BiasedEncoderNN(
params,
biased_encoder_latent_dim,
num_steps=params.num_steps,
)
biased_encoder = CVAEEncoder(
biased_encoder_nn, latent_distribution_creator=latent_distribution_creator
)
future_encoder_nn = FutureEncoderNN(
params, future_encoder_latent_dim, params.num_steps + params.num_steps_future
)
future_encoder = CVAEEncoder(
future_encoder_nn, latent_distribution_creator=latent_distribution_creator
)
inference_encoder_nn = InferenceEncoderNN(
params, inference_encoder_latent_dim, params.num_steps
)
inference_encoder = CVAEEncoder(
inference_encoder_nn, latent_distribution_creator=latent_distribution_creator
)
decoder_nn = DecoderNN(params)
decoder = CVAEAccelerationDecoder(decoder_nn)
# decoder = CVAEParametrizedDecoder(decoder_nn)
if training_mode == "inference":
cvae = InferenceBiasedCVAE(
absolute_encoder_nn,
map_encoder_nn,
biased_encoder,
inference_encoder,
decoder,
prior_distribution=prior_distribution,
)
cvae.eval()
return cvae
else:
return TrainingBiasedCVAE(
absolute_encoder_nn,
map_encoder_nn,
biased_encoder,
inference_encoder,
decoder,
future_encoder=future_encoder,
cost_function=cost_function,
risk_estimator=risk_estimator,
training_mode=training_mode,
latent_regularization=params.latent_regularization,
risk_assymetry_factor=params.risk_assymetry_factor,
prior_distribution=prior_distribution,
)
|