from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name = "EQUES/TinyDeepSeek-1.5B" # トークナイザーのロード tokenizer = AutoTokenizer.from_pretrained(model_name) # モデルのロード(無償プランのメモリ制限を考慮してCPUにロード) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") # テスト用の入力 input_text = "Explain large language models in simple terms." input_ids = tokenizer(input_text, return_tensors="pt").input_ids # 推論実行 output = model.generate(input_ids, max_length=100) generated_text = tokenizer.decode(output[0], skip_special_tokens=True) print(generated_text)