Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,12 @@
|
|
1 |
-
from fastapi import FastAPI
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
-
import torch
|
4 |
|
5 |
-
MODEL_NAME = "
|
6 |
|
7 |
-
# メモリ最適化を適用
|
8 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
9 |
-
model = AutoModelForCausalLM.from_pretrained(
|
10 |
-
MODEL_NAME,
|
11 |
-
torch_dtype=torch.float16, # メモリ節約のため16bit
|
12 |
-
device_map="auto", # CPUメモリへ分割割り当て
|
13 |
-
low_cpu_mem_usage=True # 初期化時のメモリ削減
|
14 |
-
)
|
15 |
|
16 |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
def root():
|
22 |
-
return {"message": "TinyDeepSeek API is running!"}
|
23 |
-
|
24 |
-
@app.get("/generate")
|
25 |
-
def generate(prompt: str, max_length: int = 100):
|
26 |
-
result = generator(prompt, max_length=max_length)[0]['generated_text']
|
27 |
-
return {"response": result}
|
28 |
-
|
29 |
-
|
|
|
|
|
1 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
2 |
|
3 |
+
MODEL_NAME = "Lightblue/DeepSeek-R1-Distill-Qwen-7B-Japanese"
|
4 |
|
|
|
5 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
6 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
9 |
|
10 |
+
prompt = "こんにちは、これはテストです。"
|
11 |
+
result = generator(prompt, max_length=100)[0]['generated_text']
|
12 |
+
print(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|