File size: 3,618 Bytes
2e8ccd8
a262dd1
 
 
 
 
 
 
2e8ccd8
23d88ae
a262dd1
23d88ae
 
 
 
a262dd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23d88ae
a262dd1
 
 
 
23d88ae
 
 
 
 
2e8ccd8
a262dd1
2e8ccd8
23d88ae
 
 
 
 
 
 
 
 
 
 
2e8ccd8
23d88ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e8ccd8
 
23d88ae
 
 
2e8ccd8
 
 
 
23d88ae
 
a262dd1
 
23d88ae
2e8ccd8
 
a262dd1
23d88ae
2e8ccd8
23d88ae
2e8ccd8
18855ba
 
23d88ae
18855ba
 
 
23d88ae
 
 
 
18855ba
23d88ae
2e8ccd8
a262dd1
f7d4f80
23d88ae
a262dd1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import gradio as gr
from transformers import ViTForImageClassification, ViTImageProcessor
from PIL import Image
import torch

# Load the model and processor from Hugging Face
model = ViTForImageClassification.from_pretrained("dima806/deepfake_vs_real_image_detection")
processor = ViTImageProcessor.from_pretrained("dima806/deepfake_vs_real_image_detection")

def detect(image):
    """Detect deepfake content in an image using dima806/deepfake_vs_real_image_detection"""
    if image is None:
        raise gr.Error("Please upload an image to analyze")
    
    try:
        # Convert Gradio image (filepath) to PIL Image
        pil_image = Image.open(image).convert("RGB")
        
        # Preprocess the image
        inputs = processor(images=pil_image, return_tensors="pt")
        
        # Perform inference
        with torch.no_grad():
            outputs = model(**inputs)
            logits = outputs.logits
            predicted_class = torch.argmax(logits, dim=1).item()
        
        # Get confidence scores
        probabilities = torch.softmax(logits, dim=1)[0]
        confidence_real = probabilities[0].item() * 100
        confidence_fake = probabilities[1].item() * 100
        
        # Map class index to label
        label = model.config.id2label[predicted_class]
        
        # Prepare output
        overall = f"{max(confidence_real, confidence_fake):.1f}% Confidence"
        aigen = f"{confidence_fake:.1f}% (AI-Generated Content Likelihood)"
        deepfake = f"{confidence_fake:.1f}% (Face Manipulation Likelihood)"
        
        return overall, aigen, deepfake
    
    except Exception as e:
        raise gr.Error(f"Analysis error: {str(e)}")

# Custom CSS (unchanged from your original)
custom_css = """
.container {
    max-width: 1200px;
    margin: 0 auto;
    padding: 20px;
    font-family: 'Arial', sans-serif;
}
.header {
    color: #2c3e50;
    border-bottom: 2px solid #3498db;
    padding-bottom: 10px;
}
.button-gradient {
    background: linear-gradient(45deg, #3498db, #2ecc71, #9b59b6);
    background-size: 400% 400%;
    border: none;
    padding: 12px 24px;
    font-size: 16px;
    font-weight: 600;
    color: white;
    border-radius: 8px;
    cursor: pointer;
    transition: all 0.3s ease;
    animation: gradientAnimation 3s ease infinite;
    box-shadow: 0 2px 8px rgba(52, 152, 219, 0.3);
}
.button-gradient:hover {
    transform: translateY(-2px);
    box-shadow: 0 4px 12px rgba(52, 152, 219, 0.5);
}
@keyframes gradientAnimation {
    0% { background-position: 0% 50%; }
    50% { background-position: 100% 50%; }
    100% { background-position: 0% 50%; }
}
"""

MARKDOWN0 = """
<div class="header">
    <h1>DeepFake Detection System</h1>
    <p>Advanced AI-powered analysis for identifying manipulated media<br>
    Powered by dima806/deepfake_vs_real_image_detection model</p>
</div>
"""

# Create Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as demo:
    gr.Markdown(MARKDOWN0)
    with gr.Row(elem_classes="container"):
        with gr.Column(scale=1):
            image = gr.Image(type='filepath', height=400, label="Upload Image")
            detect_button = gr.Button("Analyze Image", elem_classes="button-gradient")
        with gr.Column(scale=2):
            overall = gr.Label(label="Confidence Score")
            aigen = gr.Label(label="AI-Generated Content")
            deepfake = gr.Label(label="Face Manipulation")
    
    detect_button.click(
        fn=detect,
        inputs=[image],
        outputs=[overall, aigen, deepfake]
    )

# Launch the application
demo.launch(
    debug=True
)