ubowang commited on
Commit
ddc4b67
·
verified ·
1 Parent(s): 324387b

Update utils.py

Browse files
Files changed (1) hide show
  1. utils.py +30 -28
utils.py CHANGED
@@ -142,39 +142,36 @@ def refresh_data():
142
  df = get_df()
143
  return df[COLUMN_NAMES]
144
 
145
- # def refresh_data():
146
- # df = get_df()
147
- # min_size, max_size = get_size_range(df)
148
- # filtered_df = search_and_filter_models(df, "", min_size, max_size)
149
- # return filtered_df[COLUMN_NAMES]
150
 
 
 
 
 
 
151
 
152
- # def search_and_filter_models(df, query, min_size, max_size):
153
- # if query:
154
- # df = df[df['Models'].str.contains(query, case=False, na=False)]
155
 
156
- # numeric_mask = df['Model Size(B)'].apply(lambda x: isinstance(x, (int, float)))
157
- # size_filtered = df[numeric_mask &
158
- # (df['Model Size(B)'] >= min_size) &
159
- # (df['Model Size(B)'] <= max_size)]
160
- # unknown_entries = df[df['Model Size(B)'] == 'unknown']
161
 
162
- # return pd.concat([size_filtered, unknown_entries])[COLUMN_NAMES]
163
 
164
- def search_and_filter_models(df, query, min_size, max_size):
165
- filtered_df = df.copy()
166
 
167
- if query:
168
- filtered_df = filtered_df[filtered_df['Models'].str.contains(query, case=False, na=False)]
 
 
 
169
 
170
- def size_filter(x):
171
- if isinstance(x, (int, float)):
172
- return min_size <= x <= max_size
173
- return True
174
 
175
- filtered_df = filtered_df[filtered_df['Model Size(B)'].apply(size_filter)]
176
 
177
- return filtered_df[COLUMN_NAMES]
178
 
179
 
180
  def search_models(df, query):
@@ -183,11 +180,16 @@ def search_models(df, query):
183
  return df
184
 
185
 
 
 
 
 
 
 
 
186
  def get_size_range(df):
187
- numeric_sizes = df[df['Model Size(B)'].apply(lambda x: isinstance(x, (int, float)))]['Model Size(B)']
188
- if len(numeric_sizes) > 0:
189
- return float(numeric_sizes.min()), float(numeric_sizes.max())
190
- return 0, 1000
191
 
192
 
193
  def process_model_size(size):
 
142
  df = get_df()
143
  return df[COLUMN_NAMES]
144
 
 
 
 
 
 
145
 
146
+ def search_and_filter_models(df, query, min_size, max_size):
147
+ filtered_df = df.copy()
148
+
149
+ if query:
150
+ filtered_df = filtered_df[filtered_df['Models'].str.contains(query, case=False, na=False)]
151
 
152
+ size_mask = filtered_df['Model Size(B)'].apply(lambda x:
153
+ (min_size <= 1000.0 <= max_size) if x == 'unknown'
154
+ else (min_size <= x <= max_size))
155
 
156
+ filtered_df = filtered_df[size_mask]
 
 
 
 
157
 
158
+ return filtered_df[COLUMN_NAMES]
159
 
 
 
160
 
161
+ # def search_and_filter_models(df, query, min_size, max_size):
162
+ # filtered_df = df.copy()
163
+
164
+ # if query:
165
+ # filtered_df = filtered_df[filtered_df['Models'].str.contains(query, case=False, na=False)]
166
 
167
+ # def size_filter(x):
168
+ # if isinstance(x, (int, float)):
169
+ # return min_size <= x <= max_size
170
+ # return True
171
 
172
+ # filtered_df = filtered_df[filtered_df['Model Size(B)'].apply(size_filter)]
173
 
174
+ # return filtered_df[COLUMN_NAMES]
175
 
176
 
177
  def search_models(df, query):
 
180
  return df
181
 
182
 
183
+ # def get_size_range(df):
184
+ # numeric_sizes = df[df['Model Size(B)'].apply(lambda x: isinstance(x, (int, float)))]['Model Size(B)']
185
+ # if len(numeric_sizes) > 0:
186
+ # return float(numeric_sizes.min()), float(numeric_sizes.max())
187
+ # return 0, 1000
188
+
189
+
190
  def get_size_range(df):
191
+ sizes = df['Model Size(B)'].apply(lambda x: 1000.0 if x == 'unknown' else x)
192
+ return float(sizes.min()), float(sizes.max())
 
 
193
 
194
 
195
  def process_model_size(size):