ubowang commited on
Commit
c66f0bf
·
verified ·
1 Parent(s): c80bd67

Update utils.py

Browse files
Files changed (1) hide show
  1. utils.py +12 -13
utils.py CHANGED
@@ -12,14 +12,15 @@ SUBJECTS = ["Biology", "Business", "Chemistry", "Computer Science", "Economics",
12
  "Health", "History", "Law", "Math", "Philosophy", "Physics", "Psychology", "Other"]
13
 
14
  MODEL_INFO = [
15
- "Models", "Data Source",
16
  "Overall",
17
  "Biology", "Business", "Chemistry", "Computer Science", "Economics", "Engineering",
18
  "Health", "History", "Law", "Math", "Philosophy", "Physics", "Psychology", "Other"]
19
 
20
- DATA_TITLE_TYPE = ['markdown', 'markdown', 'number', 'number', 'number', 'number', 'number', 'number',
 
21
  'number', 'number', 'number', 'number', 'number', 'number', 'number',
22
- 'number', 'number']
23
 
24
  SUBMISSION_NAME = "mmlu_pro_leaderboard_submission"
25
  SUBMISSION_URL = os.path.join("https://huggingface.co/datasets/TIGER-Lab/", SUBMISSION_NAME)
@@ -148,16 +149,14 @@ def refresh_data():
148
  def search_and_filter_models(df, query, min_size, max_size):
149
  if query:
150
  df = df[df['Models'].str.contains(query, case=False, na=False)]
151
-
152
  numeric_mask = df['Model Size(B)'].apply(lambda x: isinstance(x, (int, float)))
153
  size_filtered = df[numeric_mask &
154
- (df['Model Size(B)'] >= min_size) &
155
- (df['Model Size(B)'] <= max_size)]
156
  unknown_entries = df[df['Model Size(B)'] == 'unknown']
157
- return pd.concat([size_filtered, unknown_entries])[COLUMN_NAMES]
158
- # df = df[(df['Model Size(B)'] >= min_size) & (df['Model Size(B)'] <= max_size)]
159
 
160
- # return df[COLUMN_NAMES]
161
 
162
 
163
  def search_models(df, query):
@@ -167,10 +166,10 @@ def search_models(df, query):
167
 
168
 
169
  def get_size_range(df):
170
- sizes = df['Model Size(B)'].dropna()
171
- if len(sizes) > 0:
172
- return float(sizes.min()), float(sizes.max())
173
- return 0, 1000
174
 
175
 
176
  def process_model_size(size):
 
12
  "Health", "History", "Law", "Math", "Philosophy", "Physics", "Psychology", "Other"]
13
 
14
  MODEL_INFO = [
15
+ "Models", "Model Size(B)", "Data Source",
16
  "Overall",
17
  "Biology", "Business", "Chemistry", "Computer Science", "Economics", "Engineering",
18
  "Health", "History", "Law", "Math", "Philosophy", "Physics", "Psychology", "Other"]
19
 
20
+ DATA_TITLE_TYPE = ['markdown', 'str', 'markdown', 'number',
21
+ 'number', 'number', 'number', 'number', 'number', 'number',
22
  'number', 'number', 'number', 'number', 'number', 'number', 'number',
23
+ 'number']
24
 
25
  SUBMISSION_NAME = "mmlu_pro_leaderboard_submission"
26
  SUBMISSION_URL = os.path.join("https://huggingface.co/datasets/TIGER-Lab/", SUBMISSION_NAME)
 
149
  def search_and_filter_models(df, query, min_size, max_size):
150
  if query:
151
  df = df[df['Models'].str.contains(query, case=False, na=False)]
152
+
153
  numeric_mask = df['Model Size(B)'].apply(lambda x: isinstance(x, (int, float)))
154
  size_filtered = df[numeric_mask &
155
+ (df['Model Size(B)'] >= min_size) &
156
+ (df['Model Size(B)'] <= max_size)]
157
  unknown_entries = df[df['Model Size(B)'] == 'unknown']
 
 
158
 
159
+ return pd.concat([size_filtered, unknown_entries])[COLUMN_NAMES]
160
 
161
 
162
  def search_models(df, query):
 
166
 
167
 
168
  def get_size_range(df):
169
+ numeric_sizes = df[df['Model Size(B)'].apply(lambda x: isinstance(x, (int, float)))]['Model Size(B)']
170
+ if len(numeric_sizes) > 0:
171
+ return float(numeric_sizes.min()), float(numeric_sizes.max())
172
+ return 0, 1000
173
 
174
 
175
  def process_model_size(size):