Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update utils.py
Browse files
utils.py
CHANGED
@@ -12,14 +12,15 @@ SUBJECTS = ["Biology", "Business", "Chemistry", "Computer Science", "Economics",
|
|
12 |
"Health", "History", "Law", "Math", "Philosophy", "Physics", "Psychology", "Other"]
|
13 |
|
14 |
MODEL_INFO = [
|
15 |
-
"Models", "Data Source",
|
16 |
"Overall",
|
17 |
"Biology", "Business", "Chemistry", "Computer Science", "Economics", "Engineering",
|
18 |
"Health", "History", "Law", "Math", "Philosophy", "Physics", "Psychology", "Other"]
|
19 |
|
20 |
-
DATA_TITLE_TYPE = ['markdown', '
|
|
|
21 |
'number', 'number', 'number', 'number', 'number', 'number', 'number',
|
22 |
-
'number'
|
23 |
|
24 |
SUBMISSION_NAME = "mmlu_pro_leaderboard_submission"
|
25 |
SUBMISSION_URL = os.path.join("https://huggingface.co/datasets/TIGER-Lab/", SUBMISSION_NAME)
|
@@ -148,16 +149,14 @@ def refresh_data():
|
|
148 |
def search_and_filter_models(df, query, min_size, max_size):
|
149 |
if query:
|
150 |
df = df[df['Models'].str.contains(query, case=False, na=False)]
|
151 |
-
|
152 |
numeric_mask = df['Model Size(B)'].apply(lambda x: isinstance(x, (int, float)))
|
153 |
size_filtered = df[numeric_mask &
|
154 |
-
|
155 |
-
|
156 |
unknown_entries = df[df['Model Size(B)'] == 'unknown']
|
157 |
-
return pd.concat([size_filtered, unknown_entries])[COLUMN_NAMES]
|
158 |
-
# df = df[(df['Model Size(B)'] >= min_size) & (df['Model Size(B)'] <= max_size)]
|
159 |
|
160 |
-
|
161 |
|
162 |
|
163 |
def search_models(df, query):
|
@@ -167,10 +166,10 @@ def search_models(df, query):
|
|
167 |
|
168 |
|
169 |
def get_size_range(df):
|
170 |
-
|
171 |
-
if len(
|
172 |
-
return float(
|
173 |
-
return 0, 1000
|
174 |
|
175 |
|
176 |
def process_model_size(size):
|
|
|
12 |
"Health", "History", "Law", "Math", "Philosophy", "Physics", "Psychology", "Other"]
|
13 |
|
14 |
MODEL_INFO = [
|
15 |
+
"Models", "Model Size(B)", "Data Source",
|
16 |
"Overall",
|
17 |
"Biology", "Business", "Chemistry", "Computer Science", "Economics", "Engineering",
|
18 |
"Health", "History", "Law", "Math", "Philosophy", "Physics", "Psychology", "Other"]
|
19 |
|
20 |
+
DATA_TITLE_TYPE = ['markdown', 'str', 'markdown', 'number',
|
21 |
+
'number', 'number', 'number', 'number', 'number', 'number',
|
22 |
'number', 'number', 'number', 'number', 'number', 'number', 'number',
|
23 |
+
'number']
|
24 |
|
25 |
SUBMISSION_NAME = "mmlu_pro_leaderboard_submission"
|
26 |
SUBMISSION_URL = os.path.join("https://huggingface.co/datasets/TIGER-Lab/", SUBMISSION_NAME)
|
|
|
149 |
def search_and_filter_models(df, query, min_size, max_size):
|
150 |
if query:
|
151 |
df = df[df['Models'].str.contains(query, case=False, na=False)]
|
152 |
+
|
153 |
numeric_mask = df['Model Size(B)'].apply(lambda x: isinstance(x, (int, float)))
|
154 |
size_filtered = df[numeric_mask &
|
155 |
+
(df['Model Size(B)'] >= min_size) &
|
156 |
+
(df['Model Size(B)'] <= max_size)]
|
157 |
unknown_entries = df[df['Model Size(B)'] == 'unknown']
|
|
|
|
|
158 |
|
159 |
+
return pd.concat([size_filtered, unknown_entries])[COLUMN_NAMES]
|
160 |
|
161 |
|
162 |
def search_models(df, query):
|
|
|
166 |
|
167 |
|
168 |
def get_size_range(df):
|
169 |
+
numeric_sizes = df[df['Model Size(B)'].apply(lambda x: isinstance(x, (int, float)))]['Model Size(B)']
|
170 |
+
if len(numeric_sizes) > 0:
|
171 |
+
return float(numeric_sizes.min()), float(numeric_sizes.max())
|
172 |
+
return 0, 1000
|
173 |
|
174 |
|
175 |
def process_model_size(size):
|