Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update utils.py
Browse files
utils.py
CHANGED
@@ -8,42 +8,103 @@ from huggingface_hub import Repository
|
|
8 |
|
9 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
10 |
|
11 |
-
SUBJECTS = ["Biology", "Business", "Chemistry", "Computer Science", "Economics", "Engineering",
|
12 |
-
"Health", "History", "Law", "Math", "Philosophy", "Physics", "Psychology", "Other"]
|
13 |
-
|
14 |
MODEL_INFO = [
|
15 |
-
"
|
16 |
-
"
|
17 |
-
"
|
18 |
-
"
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
25 |
SUBMISSION_URL = os.path.join("https://huggingface.co/datasets/TIGER-Lab/", SUBMISSION_NAME)
|
26 |
-
CSV_DIR = "./
|
27 |
|
28 |
COLUMN_NAMES = MODEL_INFO
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
"""
|
36 |
|
37 |
TABLE_INTRODUCTION = """
|
38 |
"""
|
39 |
|
40 |
-
|
41 |
We list the information of the used datasets as follows:<br>
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
"""
|
44 |
|
45 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
46 |
-
CITATION_BUTTON_TEXT = r"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
SUBMIT_INTRODUCTION = """# Submit on Science Leaderboard Introduction
|
49 |
|
@@ -51,40 +112,36 @@ SUBMIT_INTRODUCTION = """# Submit on Science Leaderboard Introduction
|
|
51 |
|
52 |
```json
|
53 |
{
|
54 |
-
"Model": "[
|
55 |
-
"
|
56 |
-
"
|
57 |
-
"
|
58 |
-
|
59 |
-
"
|
|
|
60 |
}
|
61 |
```
|
62 |
-
After submitting, you can click the "Refresh" button to see the updated leaderboard
|
63 |
|
64 |
"""
|
65 |
-
|
66 |
-
|
67 |
def get_df():
|
68 |
repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN)
|
69 |
repo.git_pull()
|
70 |
df = pd.read_csv(CSV_DIR)
|
71 |
-
df = df
|
|
|
72 |
return df[COLUMN_NAMES]
|
73 |
|
74 |
-
|
75 |
def add_new_eval(
|
76 |
input_file,
|
77 |
):
|
78 |
if input_file is None:
|
79 |
return "Error! Empty file!"
|
80 |
|
81 |
-
upload_data
|
82 |
-
data_row = [f'{upload_data["Model"]}', upload_data['
|
83 |
-
for subject in SUBJECTS:
|
84 |
-
data_row += [upload_data[subject]]
|
85 |
|
86 |
-
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL,
|
87 |
-
use_auth_token=HF_TOKEN, repo_type="dataset")
|
88 |
submission_repo.git_pull()
|
89 |
|
90 |
already_submitted = []
|
@@ -105,7 +162,4 @@ def add_new_eval(
|
|
105 |
|
106 |
|
107 |
def refresh_data():
|
108 |
-
return get_df()
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
8 |
|
9 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
10 |
|
|
|
|
|
|
|
11 |
MODEL_INFO = [
|
12 |
+
"Model (CoT)",
|
13 |
+
"Avg",
|
14 |
+
"TheoremQA",
|
15 |
+
"MATH",
|
16 |
+
"GSM",
|
17 |
+
"GPQA",
|
18 |
+
"MMLU-STEM"
|
19 |
+
]
|
20 |
+
|
21 |
+
DATA_TITILE_TYPE = ['markdown', 'number', 'number', 'number', 'number', 'number', 'number']
|
22 |
+
|
23 |
+
SUBMISSION_NAME = "science_leaderboard_submission"
|
24 |
SUBMISSION_URL = os.path.join("https://huggingface.co/datasets/TIGER-Lab/", SUBMISSION_NAME)
|
25 |
+
CSV_DIR = "./science_leaderboard_submission/results.csv"
|
26 |
|
27 |
COLUMN_NAMES = MODEL_INFO
|
28 |
|
29 |
+
LEADERBORAD_INTRODUCTION = """# Science Leaderboard
|
30 |
+
|
31 |
+
**"Which large language model is the BEST on scinece and engineering?"**<br>
|
32 |
+
🏆 Welcome to the **Science** leaderboard! The leaderboard covers the most popular evaluation for different science subjects including math, phyiscs, biology, chemistry, computer science, finance.
|
33 |
+
<div style="display: flex; flex-wrap: wrap; align-items: center; gap: 10px;">
|
34 |
+
</div>
|
35 |
+
The evaluation set from the following datasets are being included in the leaderboard.
|
36 |
+
<ul>
|
37 |
+
<li> MATH (4-shot): this contains the test set of 5000 questions from American Math contest covering different fields like algebra, calculus, statistics, geometry, linear algebra, number theory.
|
38 |
+
<li> GSM8K (4-shot): this contains the test set of 1320 questions from grade school math word problems. This dataset is mainly covering algebra problems.
|
39 |
+
<li> TheoremQA (5-shot): this contains the test set of 800 questions collected from college-level exams. This covers math, physics, engineering and finance.
|
40 |
+
<li> GPQA (5-shot): this contains the test of 198 questions from college-level dataset GPQA-diamond. This covers many fields like chemistry, genetics, biology, etc.
|
41 |
+
<li> MMLU-STEM (5-shot): this contains the test of 3.3K questions from MMLU dataset. This covers many fields like math, chemistry, genetics, biology, computer science, anatomy, astronomy, etc.
|
42 |
+
</ul>
|
43 |
+
|
44 |
+
**"How to evaluate your model and submit your results?"**<br>
|
45 |
+
Please refer to the guideline in <a href="https://github.com/TIGER-AI-Lab/MAmmoTH/blob/main/math_eval/README.md">Github</a> to evaluate your own model.
|
46 |
+
|
47 |
+
<a href='https://hits.seeyoufarm.com'><img src='https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fhuggingface.co%2Fspaces%2FTIGER-Lab%2FTheoremQA-Leaderboard&count_bg=%23C7C83D&title_bg=%23555555&icon=&icon_color=%23E7E7E7&title=hits&edge_flat=false'></a>
|
48 |
"""
|
49 |
|
50 |
TABLE_INTRODUCTION = """
|
51 |
"""
|
52 |
|
53 |
+
LEADERBORAD_INFO = """
|
54 |
We list the information of the used datasets as follows:<br>
|
55 |
|
56 |
+
MATH: Measuring Mathematical Problem Solving With the MATH Dataset<br>
|
57 |
+
<a href='https://arxiv.org/pdf/2103.03874.pdf'>Paper</a><br>
|
58 |
+
<a href='https://github.com/hendrycks/math'>Code</a><br>
|
59 |
+
|
60 |
+
GSM8K: Training Verifiers to Solve Math Word Problems<br>
|
61 |
+
<a href='https://arxiv.org/pdf/2110.14168.pdf'>Paper</a><br>
|
62 |
+
<a href='https://github.com/openai/grade-school-math'>Code</a><br>
|
63 |
+
|
64 |
+
TheoremQA: A Theorem-driven Question Answering dataset<br>
|
65 |
+
<a href='https://arxiv.org/pdf/2305.12524.pdf'>Paper</a><br>
|
66 |
+
<a href='https://github.com/TIGER-AI-Lab/TheoremQA'>Code</a><br>
|
67 |
+
|
68 |
+
GPQA: A Graduate-Level Google-Proof Q&A Benchmark<br>
|
69 |
+
<a href='https://arxiv.org/pdf/2311.12022.pdf'>Paper</a><br>
|
70 |
+
<a href='https://github.com/idavidrein/gpqa'>Code</a>
|
71 |
+
|
72 |
+
MMLU: Measuring Massive Multitask Language Understanding<br>
|
73 |
+
<a href='https://arxiv.org/pdf/2009.03300.pdf'>Paper</a><br>
|
74 |
+
<a href='https://github.com/hendrycks/test'>Code</a>
|
75 |
"""
|
76 |
|
77 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
78 |
+
CITATION_BUTTON_TEXT = r"""@inproceedings{hendrycks2021measuring,
|
79 |
+
title={Measuring Mathematical Problem Solving With the MATH Dataset},
|
80 |
+
author={Hendrycks, Dan and Burns, Collin and Kadavath, Saurav and Arora, Akul and Basart, Steven and Tang, Eric and Song, Dawn and Steinhardt, Jacob},
|
81 |
+
booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)},
|
82 |
+
year={2021}
|
83 |
+
}
|
84 |
+
@article{cobbe2021training,
|
85 |
+
title={Training verifiers to solve math word problems},
|
86 |
+
author={Cobbe, Karl and Kosaraju, Vineet and Bavarian, Mohammad and Chen, Mark and Jun, Heewoo and Kaiser, Lukasz and Plappert, Matthias and Tworek, Jerry and Hilton, Jacob and Nakano, Reiichiro and others},
|
87 |
+
journal={arXiv preprint arXiv:2110.14168},
|
88 |
+
year={2021}
|
89 |
+
}
|
90 |
+
@inproceedings{chen2023theoremqa,
|
91 |
+
title={Theoremqa: A theorem-driven question answering dataset},
|
92 |
+
author={Chen, Wenhu and Yin, Ming and Ku, Max and Lu, Pan and Wan, Yixin and Ma, Xueguang and Xu, Jianyu and Wang, Xinyi and Xia, Tony},
|
93 |
+
booktitle={The 2023 Conference on Empirical Methods in Natural Language Processing},
|
94 |
+
year={2023}
|
95 |
+
}
|
96 |
+
@article{rein2023gpqa,
|
97 |
+
title={Gpqa: A graduate-level google-proof q\&a benchmark},
|
98 |
+
author={Rein, David and Hou, Betty Li and Stickland, Asa Cooper and Petty, Jackson and Pang, Richard Yuanzhe and Dirani, Julien and Michael, Julian and Bowman, Samuel R},
|
99 |
+
journal={arXiv preprint arXiv:2311.12022},
|
100 |
+
year={2023}
|
101 |
+
}
|
102 |
+
@inproceedings{hendrycks2020measuring,
|
103 |
+
title={Measuring Massive Multitask Language Understanding},
|
104 |
+
author={Hendrycks, Dan and Burns, Collin and Basart, Steven and Zou, Andy and Mazeika, Mantas and Song, Dawn and Steinhardt, Jacob},
|
105 |
+
booktitle={International Conference on Learning Representations},
|
106 |
+
year={2020}
|
107 |
+
}"""
|
108 |
|
109 |
SUBMIT_INTRODUCTION = """# Submit on Science Leaderboard Introduction
|
110 |
|
|
|
112 |
|
113 |
```json
|
114 |
{
|
115 |
+
"Model": "[NAME]",
|
116 |
+
"Repo": "https://huggingface.co/[MODEL_NAME]"
|
117 |
+
"TheoremQA": 50,
|
118 |
+
"MATH": 50,
|
119 |
+
"GSM": 50,
|
120 |
+
"GPQA": 50,
|
121 |
+
"MMLU-STEM": 50
|
122 |
}
|
123 |
```
|
124 |
+
After submitting, you can click the "Refresh" button to see the updated leaderboard(it may takes few seconds).
|
125 |
|
126 |
"""
|
|
|
|
|
127 |
def get_df():
|
128 |
repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN)
|
129 |
repo.git_pull()
|
130 |
df = pd.read_csv(CSV_DIR)
|
131 |
+
df['Avg'] = df[['TheoremQA', 'MATH', 'GSM', 'GPQA', 'MMLU-STEM']].mean(axis=1).round(1)
|
132 |
+
df = df.sort_values(by=['Avg'], ascending=False)
|
133 |
return df[COLUMN_NAMES]
|
134 |
|
|
|
135 |
def add_new_eval(
|
136 |
input_file,
|
137 |
):
|
138 |
if input_file is None:
|
139 |
return "Error! Empty file!"
|
140 |
|
141 |
+
upload_data=json.loads(input_file)
|
142 |
+
data_row = [f'[{upload_data["Model"]}]({upload_data["Repo"]})', upload_data['TheoremQA'], upload_data['MATH'], upload_data['GSM'], upload_data['GPQA'], upload_data['MMLU-STEM']]
|
|
|
|
|
143 |
|
144 |
+
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
|
|
|
145 |
submission_repo.git_pull()
|
146 |
|
147 |
already_submitted = []
|
|
|
162 |
|
163 |
|
164 |
def refresh_data():
|
165 |
+
return get_df()
|
|
|
|
|
|