Spaces:
Running
Running
fixed errors
Browse files- app.py +16 -8
- utils_v2.py +22 -2
app.py
CHANGED
|
@@ -11,6 +11,14 @@ def update_table(query, min_size, max_size, selected_tasks=None):
|
|
| 11 |
filtered_df = filtered_df[selected_columns]
|
| 12 |
return filtered_df
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
with gr.Blocks() as block:
|
| 15 |
gr.Markdown(LEADERBOARD_INTRODUCTION)
|
| 16 |
|
|
@@ -101,7 +109,7 @@ with gr.Blocks() as block:
|
|
| 101 |
with gr.TabItem("π MMEB-V2", elem_id="qa-tab-table1", id=2):
|
| 102 |
with gr.Row():
|
| 103 |
with gr.Accordion("Citation", open=False):
|
| 104 |
-
|
| 105 |
value=v2.CITATION_BUTTON_TEXT,
|
| 106 |
label=CITATION_BUTTON_LABEL,
|
| 107 |
elem_id="citation-button",
|
|
@@ -155,30 +163,30 @@ with gr.Blocks() as block:
|
|
| 155 |
|
| 156 |
refresh_button2 = gr.Button("Refresh")
|
| 157 |
|
| 158 |
-
|
| 159 |
-
|
| 160 |
|
| 161 |
search_bar2.change(
|
| 162 |
-
fn=
|
| 163 |
inputs=[search_bar2, min_size_slider2, max_size_slider2, tasks_select2],
|
| 164 |
outputs=data_component2
|
| 165 |
)
|
| 166 |
min_size_slider2.change(
|
| 167 |
-
fn=
|
| 168 |
inputs=[search_bar2, min_size_slider2, max_size_slider2, tasks_select2],
|
| 169 |
outputs=data_component2
|
| 170 |
)
|
| 171 |
max_size_slider2.change(
|
| 172 |
-
fn=
|
| 173 |
inputs=[search_bar2, min_size_slider2, max_size_slider2, tasks_select2],
|
| 174 |
outputs=data_component2
|
| 175 |
)
|
| 176 |
tasks_select2.change(
|
| 177 |
-
fn=
|
| 178 |
inputs=[search_bar2, min_size_slider2, max_size_slider2, tasks_select2],
|
| 179 |
outputs=data_component2
|
| 180 |
)
|
| 181 |
-
|
| 182 |
|
| 183 |
# table 3
|
| 184 |
with gr.TabItem("π About", elem_id="qa-tab-table2", id=3):
|
|
|
|
| 11 |
filtered_df = filtered_df[selected_columns]
|
| 12 |
return filtered_df
|
| 13 |
|
| 14 |
+
def update_table_v2(query, min_size, max_size, selected_tasks=None):
|
| 15 |
+
df = v2.get_df()
|
| 16 |
+
filtered_df = v2.search_and_filter_models(df, query, min_size, max_size)
|
| 17 |
+
if selected_tasks and len(selected_tasks) > 0:
|
| 18 |
+
selected_columns = v2.BASE_COLS + selected_tasks
|
| 19 |
+
filtered_df = filtered_df[selected_columns]
|
| 20 |
+
return filtered_df
|
| 21 |
+
|
| 22 |
with gr.Blocks() as block:
|
| 23 |
gr.Markdown(LEADERBOARD_INTRODUCTION)
|
| 24 |
|
|
|
|
| 109 |
with gr.TabItem("π MMEB-V2", elem_id="qa-tab-table1", id=2):
|
| 110 |
with gr.Row():
|
| 111 |
with gr.Accordion("Citation", open=False):
|
| 112 |
+
citation_button2 = gr.Textbox(
|
| 113 |
value=v2.CITATION_BUTTON_TEXT,
|
| 114 |
label=CITATION_BUTTON_LABEL,
|
| 115 |
elem_id="citation-button",
|
|
|
|
| 163 |
|
| 164 |
refresh_button2 = gr.Button("Refresh")
|
| 165 |
|
| 166 |
+
def update_with_tasks_v2(*args):
|
| 167 |
+
return update_table_v2(*args)
|
| 168 |
|
| 169 |
search_bar2.change(
|
| 170 |
+
fn=update_with_tasks_v2,
|
| 171 |
inputs=[search_bar2, min_size_slider2, max_size_slider2, tasks_select2],
|
| 172 |
outputs=data_component2
|
| 173 |
)
|
| 174 |
min_size_slider2.change(
|
| 175 |
+
fn=update_with_tasks_v2,
|
| 176 |
inputs=[search_bar2, min_size_slider2, max_size_slider2, tasks_select2],
|
| 177 |
outputs=data_component2
|
| 178 |
)
|
| 179 |
max_size_slider2.change(
|
| 180 |
+
fn=update_with_tasks_v2,
|
| 181 |
inputs=[search_bar2, min_size_slider2, max_size_slider2, tasks_select2],
|
| 182 |
outputs=data_component2
|
| 183 |
)
|
| 184 |
tasks_select2.change(
|
| 185 |
+
fn=update_with_tasks_v2,
|
| 186 |
inputs=[search_bar2, min_size_slider2, max_size_slider2, tasks_select2],
|
| 187 |
outputs=data_component2
|
| 188 |
)
|
| 189 |
+
refresh_button.click(fn=v2.refresh_data, outputs=data_component)
|
| 190 |
|
| 191 |
# table 3
|
| 192 |
with gr.TabItem("π About", elem_id="qa-tab-table2", id=3):
|
utils_v2.py
CHANGED
|
@@ -71,7 +71,9 @@ def calculate_score(raw_scores=None):
|
|
| 71 |
Algorithm summary:
|
| 72 |
"""
|
| 73 |
def get_avg(sum_score, leng):
|
| 74 |
-
|
|
|
|
|
|
|
| 75 |
|
| 76 |
avg_scores = {}
|
| 77 |
overall_scores_summary = {} # Stores the scores sum and length for each modality and all datasets
|
|
@@ -126,4 +128,22 @@ def get_df():
|
|
| 126 |
df['Rank'] = range(1, len(df) + 1)
|
| 127 |
df = create_hyperlinked_names(df)
|
| 128 |
|
| 129 |
-
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
Algorithm summary:
|
| 72 |
"""
|
| 73 |
def get_avg(sum_score, leng):
|
| 74 |
+
avg = sum_score / leng if leng > 0 else 0.0
|
| 75 |
+
avg = round(avg, 2) # Round to 2 decimal places
|
| 76 |
+
return avg
|
| 77 |
|
| 78 |
avg_scores = {}
|
| 79 |
overall_scores_summary = {} # Stores the scores sum and length for each modality and all datasets
|
|
|
|
| 128 |
df['Rank'] = range(1, len(df) + 1)
|
| 129 |
df = create_hyperlinked_names(df)
|
| 130 |
|
| 131 |
+
return df
|
| 132 |
+
|
| 133 |
+
def refresh_data():
|
| 134 |
+
df = get_df()
|
| 135 |
+
return df[COLUMN_NAMES]
|
| 136 |
+
|
| 137 |
+
def search_and_filter_models(df, query, min_size, max_size):
|
| 138 |
+
filtered_df = df.copy()
|
| 139 |
+
|
| 140 |
+
if query:
|
| 141 |
+
filtered_df = filtered_df[filtered_df['Models'].str.contains(query, case=False, na=False)]
|
| 142 |
+
|
| 143 |
+
size_mask = filtered_df['Model Size(B)'].apply(lambda x:
|
| 144 |
+
(min_size <= 1000.0 <= max_size) if x == 'unknown'
|
| 145 |
+
else (min_size <= x <= max_size))
|
| 146 |
+
|
| 147 |
+
filtered_df = filtered_df[size_mask]
|
| 148 |
+
|
| 149 |
+
return filtered_df[COLUMN_NAMES]
|