Spaces:
Running
Running
| import pandas as pd | |
| import gradio as gr | |
| import csv | |
| import json | |
| import os | |
| import requests | |
| import io | |
| import shutil | |
| import pprint as pp | |
| from huggingface_hub import Repository | |
| from datasets import DATASETS | |
| HF_TOKEN = os.environ.get("HF_TOKEN") | |
| BASE_COLS = ["Rank", "Models", "Model Size(B)", "Data Source"] | |
| TASKS_V1 = ["V1-Overall", "I-CLS", "I-QA", "I-RET", "I-VG"] | |
| COLUMN_NAMES = BASE_COLS + TASKS_V1 | |
| DATA_TITLE_TYPE = ['number', 'markdown', 'str', 'markdown'] + \ | |
| ['number'] * len(TASKS_V1) | |
| LEADERBOARD_INTRODUCTION = """ | |
| # 📊 **MMEB LEADERBOARD (VLM2Vec)** | |
| ## Introduction | |
| We introduce a novel benchmark, **MMEB-V1 (Massive Multimodal Embedding Benchmark)**, | |
| which includes 36 datasets spanning four meta-task categories: classification, visual question answering, retrieval, and visual grounding. MMEB provides a comprehensive framework for training | |
| and evaluating embedding models across various combinations of text and image modalities. | |
| All tasks are reformulated as ranking tasks, where the model follows instructions, processes a query, and selects the correct target from a set of candidates. The query and target can be an image, text, | |
| or a combination of both. MMEB-V1 is divided into 20 in-distribution datasets, which can be used for | |
| training, and 16 out-of-distribution datasets, reserved for evaluation. | |
| Building upon on **MMEB-V1**, **MMEB-V2** expands the evaluation scope to include five new tasks: four video-based tasks | |
| — Video Retrieval, Moment Retrieval, Video Classification, and Video Question Answering — and one task focused on visual documents, Visual Document Retrieval. | |
| This comprehensive suite enables robust evaluation of multimodal embedding models across static, temporal, and structured visual data settings. | |
| | [**📈Overview**](https://tiger-ai-lab.github.io/VLM2Vec/) | [**Github**](https://github.com/TIGER-AI-Lab/VLM2Vec) | |
| | [**📖MMEB-V2/VLM2Vec-V2 Paper**](https://arxiv.org/abs/2507.04590) | |
| | [**📖MMEB-V1/VLM2Vec-V1 Paper**](https://arxiv.org/abs/2410.05160) | |
| | [**🤗Hugging Face**](https://huggingface.co/datasets/TIGER-Lab/MMEB-V2) | |
| | [**Discord**](https://discord.gg/njyKubdtry) | | |
| """ | |
| TABLE_INTRODUCTION = """***Important Notes: *** | |
| This is the MMEB-V1 leaderboard, which is now deprecated. MMEB-V1 is now the Image section of MMEB-V2, and the results on this leaderboard have been integrated into MMEB-V2 Image tab. For researchers relying on MMEB-V1, we recommend transitioning to MMEB-V2 for more comprehensive evaluation metrics and support. Thank you for your collaborations and understanding! \n""" | |
| LEADERBOARD_INFO = f""" | |
| ## Dataset Overview | |
| This is the dictionary of all datasets used in our code. Please make sure all datasets' scores are included in your submission. \n | |
| ```python | |
| {pp.pformat(DATASETS)} | |
| ``` | |
| """ | |
| CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results" | |
| CITATION_BUTTON_TEXT = r"""@article{jiang2024vlm2vec, | |
| title={VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks}, | |
| author={Jiang, Ziyan and Meng, Rui and Yang, Xinyi and Yavuz, Semih and Zhou, Yingbo and Chen, Wenhu}, | |
| journal={arXiv preprint arXiv:2410.05160}, | |
| year={2024} | |
| }""" | |
| SUBMIT_INTRODUCTION = """# Submit on MMEB Leaderboard Introduction | |
| ## Please refer to the [**GitHub page**](https://github.com/TIGER-AI-Lab/VLM2Vec) for detailed instructions about evaluating your model. \n | |
| ## ⚠️ Please note that you need to submit the JSON file with the following format: | |
| ```json | |
| { | |
| "metadata": { | |
| "model_name": "<Model Name>", | |
| "url": "<Model URL>" or null, | |
| "model_size": <Model Size> or null, | |
| "data_source": "Self-Reported", | |
| ... ... | |
| }, | |
| "metrics": { | |
| "image": { | |
| "ImageNet-1K": { | |
| "hit@1": 0.5, | |
| "ndcg@1": 0.5, | |
| ... ... | |
| }, | |
| "N24News": { | |
| ... ... | |
| }, | |
| ... ... | |
| }, | |
| "visdoc": { | |
| "ViDoRe": { | |
| "hit@1": 0.5, | |
| "ndcg@1": 0.5, | |
| ... ... | |
| }, | |
| ... ... | |
| }, | |
| "video": { | |
| "DiDeMo": { | |
| "hit@1": 0.5, | |
| "ndcg@1": 0.5, | |
| ... ... | |
| }, | |
| "MSR-VTT": { | |
| ... ... | |
| }, | |
| ... ... | |
| } | |
| } | |
| } | |
| ``` | |
| To submit, create a pull request and upload the generated JSON file to the ***scores*** folder, then inform us on [our discord server](https://discord.gg/njyKubdtry), or send us an email at [email protected], including your model's information. \n | |
| We will review your submission and update the leaderboard accordingly. \n | |
| We highly recommend joining our [discord server](https://discord.gg/njyKubdtry), which provides a convenient way to stay informed with latest updates, or share any feedback you have for improving the leaderboard experience. We appreciate your contributions to the MMEB community! | |
| """ | |
| def create_hyperlinked_names(df): | |
| def convert_url(url, model_name): | |
| return f'<a href="{url}">{model_name}</a>' if url is not None else model_name | |
| def add_link_to_model_name(row): | |
| row['Models'] = convert_url(row['URL'], row['Models']) | |
| return row | |
| df = df.copy() | |
| df = df.apply(add_link_to_model_name, axis=1) | |
| return df | |
| # def fetch_data(file: str) -> pd.DataFrame: | |
| # # fetch the leaderboard data from remote | |
| # if file is None: | |
| # raise ValueError("URL Not Provided") | |
| # url = f"https://huggingface.co/spaces/TIGER-Lab/MMEB/resolve/main/{file}" | |
| # print(f"Fetching data from {url}") | |
| # response = requests.get(url) | |
| # if response.status_code != 200: | |
| # raise requests.HTTPError(f"Failed to fetch data: HTTP status code {response.status_code}") | |
| # return pd.read_json(io.StringIO(response.text), orient='records', lines=True) | |
| def get_df(file="results.jsonl"): | |
| df = pd.read_json(file, orient='records', lines=True) | |
| df['Model Size(B)'] = df['Model Size(B)'].apply(process_model_size) | |
| for task in TASKS_V1: | |
| if df[task].isnull().any(): | |
| df[task] = df[task].apply(lambda score: '-' if pd.isna(score) else score) | |
| df = df.sort_values(by=['V1-Overall'], ascending=False) | |
| df = create_hyperlinked_names(df) | |
| df['Rank'] = range(1, len(df) + 1) | |
| return df | |
| def refresh_data(): | |
| df = get_df() | |
| return df[COLUMN_NAMES] | |
| def search_and_filter_models(df, query, min_size, max_size): | |
| filtered_df = df.copy() | |
| if query: | |
| filtered_df = filtered_df[filtered_df['Models'].str.contains(query, case=False, na=False)] | |
| size_mask = filtered_df['Model Size(B)'].apply(lambda x: | |
| (min_size <= 1000.0 <= max_size) if x == 'unknown' | |
| else (min_size <= x <= max_size)) | |
| filtered_df = filtered_df[size_mask] | |
| return filtered_df[COLUMN_NAMES] | |
| def search_models(df, query): | |
| if query: | |
| return df[df['Models'].str.contains(query, case=False, na=False)] | |
| return df | |
| def get_size_range(df): | |
| sizes = df['Model Size(B)'].apply(lambda x: 0.0 if x == 'unknown' else x) | |
| if (sizes == 0.0).all(): | |
| return 0.0, 1000.0 | |
| return float(sizes.min()), float(sizes.max()) | |
| def process_model_size(size): | |
| if pd.isna(size) or size == 'unk': | |
| return 'unknown' | |
| try: | |
| val = float(size) | |
| return round(val, 3) | |
| except (ValueError, TypeError): | |
| return 'unknown' | |
| def filter_columns_by_tasks(df, selected_tasks=None): | |
| if selected_tasks is None or len(selected_tasks) == 0: | |
| return df[COLUMN_NAMES] | |
| base_columns = ['Models', 'Model Size(B)', 'Data Source', 'Overall'] | |
| selected_columns = base_columns + selected_tasks | |
| available_columns = [col for col in selected_columns if col in df.columns] | |
| return df[available_columns] | |