File size: 6,128 Bytes
2016488
6ae8aba
2016488
 
 
ba1590f
2016488
 
ba1590f
 
2016488
 
 
baae497
6ae8aba
 
 
 
2016488
 
 
 
64dcfc0
392edcb
6ae8aba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baae497
6ae8aba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fe97ad
6ae8aba
 
 
 
5fe97ad
6ae8aba
 
 
 
5fe97ad
6ae8aba
 
392edcb
2016488
baae497
 
 
 
 
 
 
 
 
 
 
 
 
64dcfc0
eb02c16
64dcfc0
baae497
74aafd0
baae497
74aafd0
 
 
 
 
 
 
6ae8aba
64dcfc0
392edcb
64dcfc0
74aafd0
64dcfc0
74aafd0
 
 
 
 
 
 
 
64dcfc0
392edcb
64dcfc0
74aafd0
01ad525
74aafd0
 
 
 
 
 
 
 
392edcb
 
74aafd0
 
 
392edcb
 
2016488
 
 
392edcb
74aafd0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from utils import *
import utils_v2 as v2

global data_component

def update_table(query, min_size, max_size, selected_tasks=None):
    df = get_df()
    filtered_df = search_and_filter_models(df, query, min_size, max_size)
    if selected_tasks and len(selected_tasks) > 0:
        selected_columns = BASE_COLS + selected_tasks
        filtered_df = filtered_df[selected_columns]
    return filtered_df

def update_table_v2(query, min_size, max_size):
    df = v2.get_df()
    filtered_df = v2.search_and_filter_models(df, query, min_size, max_size)
    return filtered_df

with gr.Blocks() as block:
    gr.Markdown(LEADERBOARD_INTRODUCTION)
    
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        # Table 1, the main leaderboard of overall scores
        with gr.TabItem("πŸ“Š MMEB (V2)", elem_id="qa-tab-table1", id=1):
            with gr.Row():
                with gr.Accordion("Citation", open=False):
                    citation_button2 = gr.Textbox(
                        value=v2.CITATION_BUTTON_TEXT,
                        label=CITATION_BUTTON_LABEL,
                        elem_id="citation-button",
                        lines=10,
                    )
            gr.Markdown(v2.TABLE_INTRODUCTION)

            with gr.Row():
                search_bar2 = gr.Textbox(
                    placeholder="Search models...",
                    show_label=False,
                    elem_id="search-bar"
                )
            
            df = get_df()
            df2 = v2.get_df()
            min_size2, max_size2 = get_size_range(df2)

            with gr.Row():
                min_size_slider2 = gr.Slider(
                    minimum=min_size2,
                    maximum=max_size2,
                    value=min_size2,
                    step=0.1,
                    label="Minimum number of parameters (B)",
                )
                max_size_slider2 = gr.Slider(
                    minimum=min_size2,
                    maximum=max_size2,
                    value=max_size2,
                    step=0.1,
                    label="Maximum number of parameters (B)",
                )
            data_component2 = gr.components.Dataframe(
                value=df2[v2.COLUMN_NAMES],
                headers=v2.COLUMN_NAMES,
                type="pandas",
                datatype=v2.DATA_TITLE_TYPE,
                interactive=False,
                visible=True,
                max_height=2400, 
            )
            
            refresh_button2 = gr.Button("Refresh")
            
            def update_with_tasks_v2(*args):
                return update_table_v2(*args)

            search_bar2.change(
                fn=update_with_tasks_v2, 
                inputs=[search_bar2, min_size_slider2, max_size_slider2], 
                outputs=data_component2
            )
            min_size_slider2.change(
                fn=update_with_tasks_v2, 
                inputs=[search_bar2, min_size_slider2, max_size_slider2], 
                outputs=data_component2
            )
            max_size_slider2.change(
                fn=update_with_tasks_v2, 
                inputs=[search_bar2, min_size_slider2, max_size_slider2], 
                outputs=data_component2
            )
            refresh_button2.click(fn=v2.refresh_data, outputs=data_component2)


        def get_special_processed_df2():
            """Temporary special processing to merge v1 scores with v2 image scores.
            Will be removed later after v2 is fully adopted."""
            df2_i = df2[v2.COLUMN_NAMES_I]
            df1 = df.rename(columns={'V1-Overall': 'Image-Overall'})
            df1 = df1[v2.BASE_COLS + v2.SUB_TASKS_I + ['Image-Overall']]
            combined_df = pd.concat([df1, df2_i], ignore_index=True)
            for task in v2.TASKS_I:
                combined_df[task] = combined_df[task].apply(lambda score: '-' if pd.isna(score) else score)
            combined_df = v2.rank_models(combined_df, 'Image-Overall')
            return combined_df[v2.COLUMN_NAMES_I]

        # table 2, image scores only
        with gr.TabItem("πŸ–ΌοΈ Image (Previously MMEB-V1)", elem_id="qa-tab-table1", id=2):
            gr.Markdown(v2.TABLE_INTRODUCTION_I)
            df2_i = get_special_processed_df2()
            data_component3 = gr.components.Dataframe(
                value=df2_i,
                headers=v2.COLUMN_NAMES_I,
                type="pandas",
                datatype=v2.DATA_TITLE_TYPE_I,
                interactive=False,
                visible=True,
                max_height=2400, 
            )

        # table 3, video scores only
        with gr.TabItem("πŸ’½ Video", elem_id="qa-tab-table1", id=3):
            gr.Markdown(v2.TABLE_INTRODUCTION_V)
            data_component4 = gr.components.Dataframe(
                value=v2.rank_models(df2[v2.COLUMN_NAMES_V], 'Video-Overall'),
                headers=v2.COLUMN_NAMES_V,
                type="pandas",
                datatype=v2.DATA_TITLE_TYPE_V,
                interactive=False,
                visible=True,
                max_height=2400, 
            )

        # table 4, visual document scores only
        with gr.TabItem("πŸ“‘ Visual Doc", elem_id="qa-tab-table1", id=4):
            gr.Markdown(v2.TABLE_INTRODUCTION_D)
            data_component5 = gr.components.Dataframe(
                value=v2.rank_models(df2[v2.COLUMN_NAMES_D], 'Visdoc-Overall'),
                headers=v2.COLUMN_NAMES_D,
                type="pandas",
                datatype=v2.DATA_TITLE_TYPE_D,
                interactive=False,
                visible=True,
                max_height=2400, 
            )

        # table 5
        with gr.TabItem("πŸ“ About", elem_id="qa-tab-table2", id=5):
            gr.Markdown(LEADERBOARD_INFO, elem_classes="markdown-text")
            gr.Image("overview.png", width=900, label="Dataset Overview")

        # table 6
        with gr.TabItem("πŸš€ Submit here! ", elem_id="submit-tab", id=6):
            with gr.Row():
                gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")


block.launch(share=True)