Spaces:
Running
on
Zero
Running
on
Zero
Delete app.py
Browse files
app.py
DELETED
|
@@ -1,697 +0,0 @@
|
|
| 1 |
-
# from .demo_modelpart import InferenceDemo
|
| 2 |
-
import gradio as gr
|
| 3 |
-
import os
|
| 4 |
-
from threading import Thread
|
| 5 |
-
|
| 6 |
-
# import time
|
| 7 |
-
import cv2
|
| 8 |
-
|
| 9 |
-
import datetime
|
| 10 |
-
# import copy
|
| 11 |
-
import torch
|
| 12 |
-
|
| 13 |
-
import spaces
|
| 14 |
-
import numpy as np
|
| 15 |
-
|
| 16 |
-
from llava.constants import DEFAULT_IMAGE_TOKEN
|
| 17 |
-
|
| 18 |
-
from llava.constants import (
|
| 19 |
-
IMAGE_TOKEN_INDEX,
|
| 20 |
-
DEFAULT_IMAGE_TOKEN,
|
| 21 |
-
)
|
| 22 |
-
from llava.conversation import conv_templates, SeparatorStyle
|
| 23 |
-
from llava.model.builder import load_pretrained_model
|
| 24 |
-
from llava.utils import disable_torch_init
|
| 25 |
-
from llava.mm_utils import (
|
| 26 |
-
tokenizer_image_token,
|
| 27 |
-
get_model_name_from_path,
|
| 28 |
-
KeywordsStoppingCriteria,
|
| 29 |
-
)
|
| 30 |
-
|
| 31 |
-
from serve_constants import html_header, bibtext, learn_more_markdown, tos_markdown
|
| 32 |
-
|
| 33 |
-
from decord import VideoReader, cpu
|
| 34 |
-
|
| 35 |
-
import requests
|
| 36 |
-
from PIL import Image
|
| 37 |
-
import io
|
| 38 |
-
from io import BytesIO
|
| 39 |
-
from transformers import TextStreamer, TextIteratorStreamer
|
| 40 |
-
|
| 41 |
-
import hashlib
|
| 42 |
-
import PIL
|
| 43 |
-
import base64
|
| 44 |
-
import json
|
| 45 |
-
|
| 46 |
-
import datetime
|
| 47 |
-
import gradio as gr
|
| 48 |
-
import gradio_client
|
| 49 |
-
import subprocess
|
| 50 |
-
import sys
|
| 51 |
-
|
| 52 |
-
from huggingface_hub import HfApi
|
| 53 |
-
from huggingface_hub import login
|
| 54 |
-
from huggingface_hub import revision_exists
|
| 55 |
-
|
| 56 |
-
login(token=os.environ["HF_TOKEN"],
|
| 57 |
-
write_permission=True)
|
| 58 |
-
|
| 59 |
-
api = HfApi()
|
| 60 |
-
repo_name = os.environ["LOG_REPO"]
|
| 61 |
-
|
| 62 |
-
external_log_dir = "./logs"
|
| 63 |
-
LOGDIR = external_log_dir
|
| 64 |
-
VOTEDIR = "./votes"
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
def install_gradio_4_35_0():
|
| 68 |
-
current_version = gr.__version__
|
| 69 |
-
if current_version != "4.35.0":
|
| 70 |
-
print(f"Current Gradio version: {current_version}")
|
| 71 |
-
print("Installing Gradio 4.35.0...")
|
| 72 |
-
subprocess.check_call([sys.executable, "-m", "pip", "install", "gradio==4.35.0", "--force-reinstall"])
|
| 73 |
-
print("Gradio 4.35.0 installed successfully.")
|
| 74 |
-
else:
|
| 75 |
-
print("Gradio 4.35.0 is already installed.")
|
| 76 |
-
|
| 77 |
-
# Call the function to install Gradio 4.35.0 if needed
|
| 78 |
-
install_gradio_4_35_0()
|
| 79 |
-
|
| 80 |
-
import gradio as gr
|
| 81 |
-
import gradio_client
|
| 82 |
-
print(f"Gradio version: {gr.__version__}")
|
| 83 |
-
print(f"Gradio-client version: {gradio_client.__version__}")
|
| 84 |
-
|
| 85 |
-
def get_conv_log_filename():
|
| 86 |
-
t = datetime.datetime.now()
|
| 87 |
-
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-user_conv.json")
|
| 88 |
-
return name
|
| 89 |
-
|
| 90 |
-
def get_conv_vote_filename():
|
| 91 |
-
t = datetime.datetime.now()
|
| 92 |
-
name = os.path.join(VOTEDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-user_vote.json")
|
| 93 |
-
if not os.path.isfile(name):
|
| 94 |
-
os.makedirs(os.path.dirname(name), exist_ok=True)
|
| 95 |
-
return name
|
| 96 |
-
|
| 97 |
-
def vote_last_response(state, vote_type, model_selector):
|
| 98 |
-
with open(get_conv_vote_filename(), "a") as fout:
|
| 99 |
-
data = {
|
| 100 |
-
"type": vote_type,
|
| 101 |
-
"model": model_selector,
|
| 102 |
-
"state": state,
|
| 103 |
-
}
|
| 104 |
-
fout.write(json.dumps(data) + "\n")
|
| 105 |
-
api.upload_file(
|
| 106 |
-
path_or_fileobj=get_conv_vote_filename(),
|
| 107 |
-
path_in_repo=get_conv_vote_filename().replace("./votes/", ""),
|
| 108 |
-
repo_id=repo_name,
|
| 109 |
-
repo_type="dataset")
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
def upvote_last_response(state):
|
| 113 |
-
vote_last_response(state, "upvote", "MAmmoTH-VL2")
|
| 114 |
-
gr.Info("Thank you for your voting!")
|
| 115 |
-
return state
|
| 116 |
-
|
| 117 |
-
def downvote_last_response(state):
|
| 118 |
-
vote_last_response(state, "downvote", "MAmmoTH-VL2")
|
| 119 |
-
gr.Info("Thank you for your voting!")
|
| 120 |
-
return state
|
| 121 |
-
|
| 122 |
-
class InferenceDemo(object):
|
| 123 |
-
def __init__(
|
| 124 |
-
self, args, model_path, tokenizer, model, image_processor, context_len
|
| 125 |
-
) -> None:
|
| 126 |
-
disable_torch_init()
|
| 127 |
-
|
| 128 |
-
self.tokenizer, self.model, self.image_processor, self.context_len = (
|
| 129 |
-
tokenizer,
|
| 130 |
-
model,
|
| 131 |
-
image_processor,
|
| 132 |
-
context_len,
|
| 133 |
-
)
|
| 134 |
-
|
| 135 |
-
if "llama-2" in model_name.lower():
|
| 136 |
-
conv_mode = "llava_llama_2"
|
| 137 |
-
elif "v1" in model_name.lower():
|
| 138 |
-
conv_mode = "llava_v1"
|
| 139 |
-
elif "mpt" in model_name.lower():
|
| 140 |
-
conv_mode = "mpt"
|
| 141 |
-
elif "qwen" in model_name.lower():
|
| 142 |
-
conv_mode = "qwen_1_5"
|
| 143 |
-
elif "pangea" in model_name.lower():
|
| 144 |
-
conv_mode = "qwen_1_5"
|
| 145 |
-
elif "mammoth-vl" in model_name.lower():
|
| 146 |
-
conv_mode = "qwen_2_5"
|
| 147 |
-
else:
|
| 148 |
-
conv_mode = "llava_v0"
|
| 149 |
-
|
| 150 |
-
if args.conv_mode is not None and conv_mode != args.conv_mode:
|
| 151 |
-
print(
|
| 152 |
-
"[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format(
|
| 153 |
-
conv_mode, args.conv_mode, args.conv_mode
|
| 154 |
-
)
|
| 155 |
-
)
|
| 156 |
-
else:
|
| 157 |
-
args.conv_mode = conv_mode
|
| 158 |
-
self.conv_mode = conv_mode
|
| 159 |
-
self.conversation = conv_templates[args.conv_mode].copy()
|
| 160 |
-
self.num_frames = args.num_frames
|
| 161 |
-
|
| 162 |
-
class ChatSessionManager:
|
| 163 |
-
def __init__(self):
|
| 164 |
-
self.chatbot_instance = None
|
| 165 |
-
|
| 166 |
-
def initialize_chatbot(self, args, model_path, tokenizer, model, image_processor, context_len):
|
| 167 |
-
self.chatbot_instance = InferenceDemo(args, model_path, tokenizer, model, image_processor, context_len)
|
| 168 |
-
print(f"Initialized Chatbot instance with ID: {id(self.chatbot_instance)}")
|
| 169 |
-
|
| 170 |
-
def reset_chatbot(self):
|
| 171 |
-
self.chatbot_instance = None
|
| 172 |
-
|
| 173 |
-
def get_chatbot(self, args, model_path, tokenizer, model, image_processor, context_len):
|
| 174 |
-
if self.chatbot_instance is None:
|
| 175 |
-
self.initialize_chatbot(args, model_path, tokenizer, model, image_processor, context_len)
|
| 176 |
-
return self.chatbot_instance
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
def is_valid_video_filename(name):
|
| 180 |
-
video_extensions = ["avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg"]
|
| 181 |
-
|
| 182 |
-
ext = name.split(".")[-1].lower()
|
| 183 |
-
|
| 184 |
-
if ext in video_extensions:
|
| 185 |
-
return True
|
| 186 |
-
else:
|
| 187 |
-
return False
|
| 188 |
-
|
| 189 |
-
def is_valid_image_filename(name):
|
| 190 |
-
image_extensions = ["jpg", "jpeg", "png", "bmp", "gif", "tiff", "webp", "heic", "heif", "jfif", "svg", "eps", "raw"]
|
| 191 |
-
|
| 192 |
-
ext = name.split(".")[-1].lower()
|
| 193 |
-
|
| 194 |
-
if ext in image_extensions:
|
| 195 |
-
return True
|
| 196 |
-
else:
|
| 197 |
-
return False
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
def sample_frames_v1(video_file, num_frames):
|
| 201 |
-
video = cv2.VideoCapture(video_file)
|
| 202 |
-
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 203 |
-
interval = total_frames // num_frames
|
| 204 |
-
frames = []
|
| 205 |
-
for i in range(total_frames):
|
| 206 |
-
ret, frame = video.read()
|
| 207 |
-
pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 208 |
-
if not ret:
|
| 209 |
-
continue
|
| 210 |
-
if i % interval == 0:
|
| 211 |
-
frames.append(pil_img)
|
| 212 |
-
video.release()
|
| 213 |
-
return frames
|
| 214 |
-
|
| 215 |
-
def sample_frames_v2(video_path, frame_count=32):
|
| 216 |
-
video_frames = []
|
| 217 |
-
vr = VideoReader(video_path, ctx=cpu(0))
|
| 218 |
-
total_frames = len(vr)
|
| 219 |
-
frame_interval = max(total_frames // frame_count, 1)
|
| 220 |
-
|
| 221 |
-
for i in range(0, total_frames, frame_interval):
|
| 222 |
-
frame = vr[i].asnumpy()
|
| 223 |
-
frame_image = Image.fromarray(frame) # Convert to PIL.Image
|
| 224 |
-
video_frames.append(frame_image)
|
| 225 |
-
if len(video_frames) >= frame_count:
|
| 226 |
-
break
|
| 227 |
-
|
| 228 |
-
# Ensure at least one frame is returned if total frames are less than required
|
| 229 |
-
if len(video_frames) < frame_count and total_frames > 0:
|
| 230 |
-
for i in range(total_frames):
|
| 231 |
-
frame = vr[i].asnumpy()
|
| 232 |
-
frame_image = Image.fromarray(frame) # Convert to PIL.Image
|
| 233 |
-
video_frames.append(frame_image)
|
| 234 |
-
if len(video_frames) >= frame_count:
|
| 235 |
-
break
|
| 236 |
-
|
| 237 |
-
return video_frames
|
| 238 |
-
|
| 239 |
-
def sample_frames(video_path, num_frames=8):
|
| 240 |
-
cap = cv2.VideoCapture(video_path)
|
| 241 |
-
frames = []
|
| 242 |
-
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 243 |
-
indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)
|
| 244 |
-
|
| 245 |
-
for i in indices:
|
| 246 |
-
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
| 247 |
-
ret, frame = cap.read()
|
| 248 |
-
if ret:
|
| 249 |
-
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 250 |
-
frames.append(Image.fromarray(frame))
|
| 251 |
-
|
| 252 |
-
cap.release()
|
| 253 |
-
return frames
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
def load_image(image_file):
|
| 257 |
-
if image_file.startswith("http") or image_file.startswith("https"):
|
| 258 |
-
response = requests.get(image_file)
|
| 259 |
-
if response.status_code == 200:
|
| 260 |
-
image = Image.open(BytesIO(response.content)).convert("RGB")
|
| 261 |
-
else:
|
| 262 |
-
print("failed to load the image")
|
| 263 |
-
else:
|
| 264 |
-
print("Load image from local file")
|
| 265 |
-
print(image_file)
|
| 266 |
-
image = Image.open(image_file).convert("RGB")
|
| 267 |
-
|
| 268 |
-
return image
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
def clear_response(history):
|
| 272 |
-
for index_conv in range(1, len(history)):
|
| 273 |
-
# loop until get a text response from our model.
|
| 274 |
-
conv = history[-index_conv]
|
| 275 |
-
if not (conv[0] is None):
|
| 276 |
-
break
|
| 277 |
-
question = history[-index_conv][0]
|
| 278 |
-
history = history[:-index_conv]
|
| 279 |
-
return history, question
|
| 280 |
-
|
| 281 |
-
chat_manager = ChatSessionManager()
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
def clear_history(history):
|
| 285 |
-
chatbot_instance = chat_manager.get_chatbot(args, model_path, tokenizer, model, image_processor, context_len)
|
| 286 |
-
chatbot_instance.conversation = conv_templates[chatbot_instance.conv_mode].copy()
|
| 287 |
-
return None
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
def add_message(history, message):
|
| 292 |
-
global chat_image_num
|
| 293 |
-
print("#### len(history)",len(history))
|
| 294 |
-
if not history:
|
| 295 |
-
history = []
|
| 296 |
-
our_chatbot = chat_manager.get_chatbot(args, model_path, tokenizer, model, image_processor, context_len)
|
| 297 |
-
chat_image_num = 0
|
| 298 |
-
for x in message["files"]:
|
| 299 |
-
if "realcase_video.jpg" in x:
|
| 300 |
-
x = x.replace("realcase_video.jpg", "realcase_video.mp4")
|
| 301 |
-
history.append(((x,), None))
|
| 302 |
-
if message["text"] is not None:
|
| 303 |
-
history.append((message["text"], None))
|
| 304 |
-
# print(f"### Chatbot instance ID: {id(our_chatbot)}")
|
| 305 |
-
return history, gr.MultimodalTextbox(value=None, interactive=False)
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
@spaces.GPU
|
| 309 |
-
def bot(history, temperature, top_p, max_output_tokens):
|
| 310 |
-
our_chatbot = chat_manager.get_chatbot(args, model_path, tokenizer, model, image_processor, context_len)
|
| 311 |
-
print(f"### Chatbot instance ID: {id(our_chatbot)}")
|
| 312 |
-
text = history[-1][0]
|
| 313 |
-
images_this_term = []
|
| 314 |
-
text_this_term = ""
|
| 315 |
-
|
| 316 |
-
is_video = False
|
| 317 |
-
num_new_images = 0
|
| 318 |
-
# previous_image = False
|
| 319 |
-
for i, message in enumerate(history[:-1]):
|
| 320 |
-
if type(message[0]) is tuple:
|
| 321 |
-
# if previous_image:
|
| 322 |
-
# gr.Warning("Only one image can be uploaded in a conversation. Please reduce the number of images and start a new conversation.")
|
| 323 |
-
# our_chatbot.conversation = conv_templates[our_chatbot.conv_mode].copy()
|
| 324 |
-
# return None
|
| 325 |
-
|
| 326 |
-
images_this_term.append(message[0][0])
|
| 327 |
-
if is_valid_video_filename(message[0][0]):
|
| 328 |
-
# raise ValueError("Video is not supported")
|
| 329 |
-
# num_new_images += our_chatbot.num_frames
|
| 330 |
-
# num_new_images += len(sample_frames(message[0][0], our_chatbot.num_frames))
|
| 331 |
-
num_new_images += 1
|
| 332 |
-
is_video = True
|
| 333 |
-
elif is_valid_image_filename(message[0][0]):
|
| 334 |
-
print("#### Load image from local file",message[0][0])
|
| 335 |
-
num_new_images += 1
|
| 336 |
-
else:
|
| 337 |
-
raise ValueError("Invalid file format")
|
| 338 |
-
# previous_image = True
|
| 339 |
-
else:
|
| 340 |
-
num_new_images = 0
|
| 341 |
-
# previous_image = False
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
image_list = []
|
| 345 |
-
for f in images_this_term:
|
| 346 |
-
if is_valid_video_filename(f):
|
| 347 |
-
image_list += sample_frames(f, our_chatbot.num_frames)
|
| 348 |
-
elif is_valid_image_filename(f):
|
| 349 |
-
image_list.append(load_image(f))
|
| 350 |
-
else:
|
| 351 |
-
raise ValueError("Invalid image file")
|
| 352 |
-
|
| 353 |
-
all_image_hash = []
|
| 354 |
-
all_image_path = []
|
| 355 |
-
for file_path in images_this_term:
|
| 356 |
-
with open(file_path, "rb") as file:
|
| 357 |
-
file_data = file.read()
|
| 358 |
-
file_hash = hashlib.md5(file_data).hexdigest()
|
| 359 |
-
all_image_hash.append(file_hash)
|
| 360 |
-
|
| 361 |
-
t = datetime.datetime.now()
|
| 362 |
-
output_dir = os.path.join(
|
| 363 |
-
LOGDIR,
|
| 364 |
-
"serve_files",
|
| 365 |
-
f"{t.year}-{t.month:02d}-{t.day:02d}"
|
| 366 |
-
)
|
| 367 |
-
os.makedirs(output_dir, exist_ok=True)
|
| 368 |
-
|
| 369 |
-
if is_valid_image_filename(file_path):
|
| 370 |
-
# Process and save images
|
| 371 |
-
image = Image.open(file_path).convert("RGB")
|
| 372 |
-
filename = os.path.join(output_dir, f"{file_hash}.jpg")
|
| 373 |
-
all_image_path.append(filename)
|
| 374 |
-
if not os.path.isfile(filename):
|
| 375 |
-
print("Image saved to", filename)
|
| 376 |
-
image.save(filename)
|
| 377 |
-
|
| 378 |
-
elif is_valid_video_filename(file_path):
|
| 379 |
-
# Simplified video saving
|
| 380 |
-
filename = os.path.join(output_dir, f"{file_hash}.mp4")
|
| 381 |
-
all_image_path.append(filename)
|
| 382 |
-
if not os.path.isfile(filename):
|
| 383 |
-
print("Video saved to", filename)
|
| 384 |
-
os.makedirs(os.path.dirname(filename), exist_ok=True)
|
| 385 |
-
# Directly copy the video file
|
| 386 |
-
with open(file_path, "rb") as src, open(filename, "wb") as dst:
|
| 387 |
-
dst.write(src.read())
|
| 388 |
-
|
| 389 |
-
image_tensor = []
|
| 390 |
-
if is_video:
|
| 391 |
-
image_tensor = our_chatbot.image_processor.preprocess(image_list, return_tensors="pt")["pixel_values"].half().to(our_chatbot.model.device)
|
| 392 |
-
elif num_new_images > 0:
|
| 393 |
-
image_tensor = [
|
| 394 |
-
our_chatbot.image_processor.preprocess(f, return_tensors="pt")["pixel_values"][
|
| 395 |
-
0
|
| 396 |
-
]
|
| 397 |
-
.half()
|
| 398 |
-
.to(our_chatbot.model.device)
|
| 399 |
-
for f in image_list
|
| 400 |
-
]
|
| 401 |
-
image_tensor = torch.stack(image_tensor)
|
| 402 |
-
|
| 403 |
-
image_token = DEFAULT_IMAGE_TOKEN * num_new_images + "\n"
|
| 404 |
-
|
| 405 |
-
inp = text
|
| 406 |
-
inp = image_token + inp
|
| 407 |
-
our_chatbot.conversation.append_message(our_chatbot.conversation.roles[0], inp)
|
| 408 |
-
# image = None
|
| 409 |
-
our_chatbot.conversation.append_message(our_chatbot.conversation.roles[1], None)
|
| 410 |
-
prompt = our_chatbot.conversation.get_prompt()
|
| 411 |
-
|
| 412 |
-
input_ids = tokenizer_image_token(
|
| 413 |
-
prompt, our_chatbot.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt"
|
| 414 |
-
).unsqueeze(0).to(our_chatbot.model.device)
|
| 415 |
-
# print("### input_id",input_ids)
|
| 416 |
-
stop_str = (
|
| 417 |
-
our_chatbot.conversation.sep
|
| 418 |
-
if our_chatbot.conversation.sep_style != SeparatorStyle.TWO
|
| 419 |
-
else our_chatbot.conversation.sep2
|
| 420 |
-
)
|
| 421 |
-
keywords = [stop_str]
|
| 422 |
-
stopping_criteria = KeywordsStoppingCriteria(
|
| 423 |
-
keywords, our_chatbot.tokenizer, input_ids
|
| 424 |
-
)
|
| 425 |
-
|
| 426 |
-
streamer = TextIteratorStreamer(
|
| 427 |
-
our_chatbot.tokenizer, skip_prompt=True, skip_special_tokens=True
|
| 428 |
-
)
|
| 429 |
-
print(our_chatbot.model.device)
|
| 430 |
-
print(input_ids.device)
|
| 431 |
-
# print(image_tensor.device)
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
if is_video:
|
| 435 |
-
input_image_tensor = [image_tensor]
|
| 436 |
-
elif num_new_images > 0:
|
| 437 |
-
input_image_tensor = image_tensor
|
| 438 |
-
else:
|
| 439 |
-
input_image_tensor = None
|
| 440 |
-
|
| 441 |
-
generate_kwargs = dict(
|
| 442 |
-
inputs=input_ids,
|
| 443 |
-
streamer=streamer,
|
| 444 |
-
images=input_image_tensor,
|
| 445 |
-
do_sample=True,
|
| 446 |
-
temperature=temperature,
|
| 447 |
-
top_p=top_p,
|
| 448 |
-
max_new_tokens=max_output_tokens,
|
| 449 |
-
use_cache=False,
|
| 450 |
-
stopping_criteria=[stopping_criteria],
|
| 451 |
-
modalities=["video"] if is_video else ["image"]
|
| 452 |
-
)
|
| 453 |
-
|
| 454 |
-
t = Thread(target=our_chatbot.model.generate, kwargs=generate_kwargs)
|
| 455 |
-
t.start()
|
| 456 |
-
|
| 457 |
-
outputs = []
|
| 458 |
-
for stream_token in streamer:
|
| 459 |
-
outputs.append(stream_token)
|
| 460 |
-
|
| 461 |
-
history[-1] = [text, "".join(outputs)]
|
| 462 |
-
yield history
|
| 463 |
-
our_chatbot.conversation.messages[-1][-1] = "".join(outputs)
|
| 464 |
-
# print("### turn end history", history)
|
| 465 |
-
# print("### turn end conv",our_chatbot.conversation)
|
| 466 |
-
|
| 467 |
-
with open(get_conv_log_filename(), "a") as fout:
|
| 468 |
-
data = {
|
| 469 |
-
"type": "chat",
|
| 470 |
-
"model": "MAmmoTH-VL2",
|
| 471 |
-
"state": history,
|
| 472 |
-
"images": all_image_hash,
|
| 473 |
-
"images_path": all_image_path
|
| 474 |
-
}
|
| 475 |
-
print("#### conv log",data)
|
| 476 |
-
fout.write(json.dumps(data) + "\n")
|
| 477 |
-
for upload_img in all_image_path:
|
| 478 |
-
api.upload_file(
|
| 479 |
-
path_or_fileobj=upload_img,
|
| 480 |
-
path_in_repo=upload_img.replace("./logs/", ""),
|
| 481 |
-
repo_id=repo_name,
|
| 482 |
-
repo_type="dataset",
|
| 483 |
-
# revision=revision,
|
| 484 |
-
# ignore_patterns=["data*"]
|
| 485 |
-
)
|
| 486 |
-
# upload json
|
| 487 |
-
api.upload_file(
|
| 488 |
-
path_or_fileobj=get_conv_log_filename(),
|
| 489 |
-
path_in_repo=get_conv_log_filename().replace("./logs/", ""),
|
| 490 |
-
repo_id=repo_name,
|
| 491 |
-
repo_type="dataset")
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
txt = gr.Textbox(
|
| 496 |
-
scale=4,
|
| 497 |
-
show_label=False,
|
| 498 |
-
placeholder="Enter text and press enter.",
|
| 499 |
-
container=False,
|
| 500 |
-
)
|
| 501 |
-
|
| 502 |
-
with gr.Blocks(
|
| 503 |
-
css=".message-wrap.svelte-1lcyrx4>div.svelte-1lcyrx4 img {min-width: 40px}",
|
| 504 |
-
) as demo:
|
| 505 |
-
|
| 506 |
-
cur_dir = os.path.dirname(os.path.abspath(__file__))
|
| 507 |
-
# gr.Markdown(title_markdown)
|
| 508 |
-
gr.HTML(html_header)
|
| 509 |
-
|
| 510 |
-
with gr.Column():
|
| 511 |
-
with gr.Accordion("Parameters", open=False) as parameter_row:
|
| 512 |
-
temperature = gr.Slider(
|
| 513 |
-
minimum=0.0,
|
| 514 |
-
maximum=1.0,
|
| 515 |
-
value=0.7,
|
| 516 |
-
step=0.1,
|
| 517 |
-
interactive=True,
|
| 518 |
-
label="Temperature",
|
| 519 |
-
)
|
| 520 |
-
top_p = gr.Slider(
|
| 521 |
-
minimum=0.0,
|
| 522 |
-
maximum=1.0,
|
| 523 |
-
value=1,
|
| 524 |
-
step=0.1,
|
| 525 |
-
interactive=True,
|
| 526 |
-
label="Top P",
|
| 527 |
-
)
|
| 528 |
-
max_output_tokens = gr.Slider(
|
| 529 |
-
minimum=0,
|
| 530 |
-
maximum=8192,
|
| 531 |
-
value=4096,
|
| 532 |
-
step=256,
|
| 533 |
-
interactive=True,
|
| 534 |
-
label="Max output tokens",
|
| 535 |
-
)
|
| 536 |
-
with gr.Row():
|
| 537 |
-
chatbot = gr.Chatbot([], elem_id="MAmmoTH-VL-8B", bubble_full_width=False, height=750)
|
| 538 |
-
|
| 539 |
-
with gr.Row():
|
| 540 |
-
upvote_btn = gr.Button(value="👍 Upvote", interactive=True)
|
| 541 |
-
downvote_btn = gr.Button(value="👎 Downvote", interactive=True)
|
| 542 |
-
flag_btn = gr.Button(value="⚠️ Flag", interactive=True)
|
| 543 |
-
# stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=True)
|
| 544 |
-
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=True)
|
| 545 |
-
clear_btn = gr.Button(value="🗑️ Clear history", interactive=True)
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
chat_input = gr.MultimodalTextbox(
|
| 549 |
-
interactive=True,
|
| 550 |
-
file_types=["image", "video"],
|
| 551 |
-
placeholder="Enter message or upload file...",
|
| 552 |
-
show_label=False,
|
| 553 |
-
submit_btn="🚀"
|
| 554 |
-
)
|
| 555 |
-
|
| 556 |
-
print(cur_dir)
|
| 557 |
-
gr.Examples(
|
| 558 |
-
examples_per_page=20,
|
| 559 |
-
examples=[
|
| 560 |
-
[
|
| 561 |
-
{
|
| 562 |
-
"files": [
|
| 563 |
-
f"{cur_dir}/examples/172197131626056_P7966202.png",
|
| 564 |
-
],
|
| 565 |
-
"text": "Why this image funny?",
|
| 566 |
-
}
|
| 567 |
-
],
|
| 568 |
-
[
|
| 569 |
-
{
|
| 570 |
-
"files": [
|
| 571 |
-
f"{cur_dir}/examples/realcase_doc.png",
|
| 572 |
-
],
|
| 573 |
-
"text": "Read text in the image",
|
| 574 |
-
}
|
| 575 |
-
],
|
| 576 |
-
[
|
| 577 |
-
{
|
| 578 |
-
"files": [
|
| 579 |
-
f"{cur_dir}/examples/realcase_weather.jpg",
|
| 580 |
-
],
|
| 581 |
-
"text": "List the weather for Monday to Friday",
|
| 582 |
-
}
|
| 583 |
-
],
|
| 584 |
-
[
|
| 585 |
-
{
|
| 586 |
-
"files": [
|
| 587 |
-
f"{cur_dir}/examples/realcase_knowledge.jpg",
|
| 588 |
-
],
|
| 589 |
-
"text": "Answer the following question based on the provided image: What country do these planes belong to?",
|
| 590 |
-
}
|
| 591 |
-
],
|
| 592 |
-
[
|
| 593 |
-
{
|
| 594 |
-
"files": [
|
| 595 |
-
f"{cur_dir}/examples/realcase_math.jpg",
|
| 596 |
-
],
|
| 597 |
-
"text": "Find the measure of angle 3. Please provide a step by step solution.",
|
| 598 |
-
}
|
| 599 |
-
],
|
| 600 |
-
[
|
| 601 |
-
{
|
| 602 |
-
"files": [
|
| 603 |
-
f"{cur_dir}/examples/realcase_interact.jpg",
|
| 604 |
-
],
|
| 605 |
-
"text": "Please perfectly describe this cartoon illustration in as much detail as possible",
|
| 606 |
-
}
|
| 607 |
-
],
|
| 608 |
-
[
|
| 609 |
-
{
|
| 610 |
-
"files": [
|
| 611 |
-
f"{cur_dir}/examples/realcase_perfer.jpg",
|
| 612 |
-
],
|
| 613 |
-
"text": "This is an image of a room. It could either be a real image captured in the room or a rendered image from a 3D scene reconstruction technique that is trained using real images of the room. A rendered image usually contains some visible artifacts (eg. blurred regions due to under-reconstructed areas) that do not faithfully represent the actual scene. You need to decide if its a real image or a rendered image by giving each image a photorealism score between 1 and 5.",
|
| 614 |
-
}
|
| 615 |
-
],
|
| 616 |
-
[
|
| 617 |
-
{
|
| 618 |
-
"files": [
|
| 619 |
-
f"{cur_dir}/examples/realcase_multi1.png",
|
| 620 |
-
f"{cur_dir}/examples/realcase_multi2.png",
|
| 621 |
-
f"{cur_dir}/examples/realcase_multi3.png",
|
| 622 |
-
f"{cur_dir}/examples/realcase_multi4.png",
|
| 623 |
-
f"{cur_dir}/examples/realcase_multi5.png",
|
| 624 |
-
],
|
| 625 |
-
"text": "Based on the five species in the images, draw a food chain. Explain the role of each species in the food chain.",
|
| 626 |
-
}
|
| 627 |
-
],
|
| 628 |
-
],
|
| 629 |
-
inputs=[chat_input],
|
| 630 |
-
label="Real World Image Cases",
|
| 631 |
-
)
|
| 632 |
-
gr.Examples(
|
| 633 |
-
examples=[
|
| 634 |
-
[
|
| 635 |
-
{
|
| 636 |
-
"files": [
|
| 637 |
-
f"{cur_dir}/examples/realcase_video.mp4",
|
| 638 |
-
],
|
| 639 |
-
"text": "Please describe the video in detail.",
|
| 640 |
-
},
|
| 641 |
-
]
|
| 642 |
-
],
|
| 643 |
-
inputs=[chat_input],
|
| 644 |
-
label="Real World Video Case"
|
| 645 |
-
)
|
| 646 |
-
|
| 647 |
-
gr.Markdown(tos_markdown)
|
| 648 |
-
gr.Markdown(learn_more_markdown)
|
| 649 |
-
gr.Markdown(bibtext)
|
| 650 |
-
|
| 651 |
-
chat_input.submit(
|
| 652 |
-
add_message, [chatbot, chat_input], [chatbot, chat_input]
|
| 653 |
-
).then(bot, [chatbot, temperature, top_p, max_output_tokens], chatbot, api_name="bot_response").then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
# chatbot.like(print_like_dislike, None, None)
|
| 657 |
-
clear_btn.click(
|
| 658 |
-
fn=clear_history, inputs=[chatbot], outputs=[chatbot], api_name="clear_all"
|
| 659 |
-
)
|
| 660 |
-
|
| 661 |
-
upvote_btn.click(
|
| 662 |
-
fn=upvote_last_response, inputs=chatbot, outputs=chatbot, api_name="upvote_last_response"
|
| 663 |
-
)
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
downvote_btn.click(
|
| 667 |
-
fn=downvote_last_response, inputs=chatbot, outputs=chatbot, api_name="upvote_last_response"
|
| 668 |
-
)
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
demo.queue()
|
| 672 |
-
|
| 673 |
-
if __name__ == "__main__":
|
| 674 |
-
import argparse
|
| 675 |
-
|
| 676 |
-
argparser = argparse.ArgumentParser()
|
| 677 |
-
argparser.add_argument("--server_name", default="0.0.0.0", type=str)
|
| 678 |
-
argparser.add_argument("--model_path", default="TIGER-Lab/MAmmoTH-VL2", type=str)
|
| 679 |
-
argparser.add_argument("--model-base", type=str, default=None)
|
| 680 |
-
argparser.add_argument("--num-gpus", type=int, default=1)
|
| 681 |
-
argparser.add_argument("--conv-mode", type=str, default=None)
|
| 682 |
-
argparser.add_argument("--temperature", type=float, default=0.7)
|
| 683 |
-
argparser.add_argument("--max-new-tokens", type=int, default=4096)
|
| 684 |
-
argparser.add_argument("--num_frames", type=int, default=32)
|
| 685 |
-
argparser.add_argument("--load-8bit", action="store_true")
|
| 686 |
-
argparser.add_argument("--load-4bit", action="store_true")
|
| 687 |
-
argparser.add_argument("--debug", action="store_true")
|
| 688 |
-
|
| 689 |
-
args = argparser.parse_args()
|
| 690 |
-
|
| 691 |
-
model_path = args.model_path
|
| 692 |
-
filt_invalid = "cut"
|
| 693 |
-
model_name = get_model_name_from_path(args.model_path)
|
| 694 |
-
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit)
|
| 695 |
-
model=model.to(torch.device('cuda'))
|
| 696 |
-
chat_image_num = 0
|
| 697 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|