Spaces:
Running
Running
File size: 27,872 Bytes
89dc200 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
# -*- encoding: utf-8 -*-
'''
@File : cogvideo_model.py
@Time : 2022/07/11 16:12:05
@Author : Wenyi Hong
@Version : 1.0
@Contact : [email protected]
'''
# here put the import lib
import torch
from SwissArmyTransformer.model.base_model import BaseModel, BaseMixin
from SwissArmyTransformer.mpu.utils import split_tensor_along_last_dim
from SwissArmyTransformer.model.transformer import unscaled_init_method
from SwissArmyTransformer.mpu import ColumnParallelLinear, RowParallelLinear
import torch.nn.functional as F
from deepspeed.runtime.activation_checkpointing.checkpointing import get_cuda_rng_tracker
import math
class PositionEmbeddingMixin(BaseMixin):
def __init__(self, additional_sequence_length, hidden_size,
init_method_std=0.02, reinit_slice=slice(512, 912),
):
super(PositionEmbeddingMixin, self).__init__()
self.reinit_slice = reinit_slice
self.position_embeddings = torch.nn.Embedding(additional_sequence_length, hidden_size)
torch.nn.init.normal_(self.position_embeddings.weight, mean=0.0, std=init_method_std)
def reinit(self, parent_model=None):
old_weights = self.transformer.position_embeddings.weight.data[self.reinit_slice]
old_len, hidden_size = old_weights.shape
assert hidden_size == self.position_embeddings.weight.shape[-1]
self.position_embeddings.weight.data.view(-1, old_len, hidden_size).copy_(old_weights)
def window_partition(x, window_size):
"""
Args:
x: (B, framenum, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, frame_num, window_size, window_size, C)
"""
B, framenum, H, W, C = x.shape
x = x.view(B, framenum, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 2, 4, 1, 3, 5, 6).contiguous().view(-1, framenum, window_size, window_size, C)
return windows
def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, frame_num, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, frame_num, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
framenum = windows.shape[1]
x = windows.view(B, H // window_size, W // window_size, framenum, window_size, window_size, -1)
x = x.permute(0, 3, 1, 4, 2, 5, 6).contiguous().view(B, framenum, H, W, -1)
return x
class WindowAttentionMixin(BaseMixin):
def __init__(self, num_layers,
hidden_size,
frame_resolution,
window_size,
shift_size,
n_head,
frame_num,
init_method=unscaled_init_method(0.02),
output_layer_init_method=unscaled_init_method(0.02),
):
super(WindowAttentionMixin, self).__init__()
self.num_layers = num_layers # replace attention in the LAST n layers
self.query_key_value = torch.nn.ModuleList(
[ColumnParallelLinear(hidden_size, 3*hidden_size,stride=3,
gather_output=False,init_method=init_method)
for layer_id in range(num_layers)
])
self.dense = torch.nn.ModuleList(
[RowParallelLinear(
hidden_size,
hidden_size,
input_is_parallel=True,
init_method=output_layer_init_method,
bias=True,
module=self,
name="dense",
)
for layer_id in range(num_layers)
])
self.n_head = n_head
self.window_size = window_size
self.frame_resolution = frame_resolution
self.frame_len = frame_resolution * frame_resolution
assert frame_resolution % window_size == 0
assert 0 < shift_size < window_size
nW = (self.frame_resolution // self.window_size) ** 2
ws_squre = self.window_size * self.window_size
# odd non-shift, even shift
img_mask = torch.zeros((1, 1, frame_resolution, frame_resolution, 1))
h_slices = (slice(0, -shift_size),
slice(-shift_size, None))
w_slices = (slice(0, -shift_size),
slice(-shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, :, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # nW, 1, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
sub_attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) #[nW, self.window_size * self.window_size, self.window_size * self.window_size]
sub_attn_mask = sub_attn_mask.masked_fill(sub_attn_mask != 0, float(0.0)).masked_fill(sub_attn_mask == 0, float(1.00))
attn_mask = sub_attn_mask.repeat(1, frame_num, frame_num)
self.attn_mask_sequential = attn_mask.clone().tril()
self.causal_mask_sequential = torch.ones(1, ws_squre*frame_num, ws_squre*frame_num).tril()
self.causal_mask_interp = torch.ones(1, ws_squre*frame_num, ws_squre*frame_num)
self.attn_mask_interp = attn_mask.clone()
# bi-dir
for bi_idx in range(0, frame_num, 2):
for uni_idx in range(1, frame_num, 2):
self.attn_mask_interp[:, bi_idx*ws_squre:(bi_idx+1)*ws_squre, uni_idx*ws_squre:(uni_idx+1)*ws_squre] = 0
self.causal_mask_interp[:, bi_idx*ws_squre:(bi_idx+1)*ws_squre, uni_idx*ws_squre:(uni_idx+1)*ws_squre] = 0
# uni-dir
for uni_idx in range(1, frame_num, 2):
self.attn_mask_interp[:, ws_squre*uni_idx:ws_squre*(uni_idx+1), ws_squre*uni_idx:ws_squre*(uni_idx+1)].tril_()
self.causal_mask_interp[:, ws_squre*uni_idx:ws_squre*(uni_idx+1), ws_squre*uni_idx:ws_squre*(uni_idx+1)].tril_()
for uni_idx2 in range(uni_idx+2, frame_num, 2):
self.attn_mask_interp[:, ws_squre*uni_idx:ws_squre*(uni_idx+1), ws_squre*uni_idx2:ws_squre*(uni_idx2+1)] = 0
self.causal_mask_interp[:, ws_squre*uni_idx:ws_squre*(uni_idx+1), ws_squre*uni_idx2:ws_squre*(uni_idx2+1)] = 0
# expand dim
self.attn_mask_sequential = self.attn_mask_sequential[None, None, :, None]
self.attn_mask_interp = self.attn_mask_interp[None, None, :, None]
self.causal_mask_sequential = self.causal_mask_sequential[None, None, :, None]
self.causal_mask_interp = self.causal_mask_interp[None, None, :, None]
self.shift_sizes = [0, shift_size]
# self.register_buffer("attn_mask", attn_mask)
# self.register_buffer("causal_mask", causal_mask)
self.mask_initialized = False
self.attn_distribution = torch.nn.ParameterList([
torch.nn.Parameter(torch.zeros(hidden_size))
for _ in range(num_layers)
])
def reinit(self, *pre_mixins):
start_layer = len(self.transformer.layers) - self.num_layers
assert start_layer >= 0
for layer_id in range(self.num_layers):
old_attention = self.transformer.layers[start_layer + layer_id].attention
self.query_key_value[layer_id].weight.data.copy_(old_attention.query_key_value.weight.data)
self.query_key_value[layer_id].bias.data.copy_(old_attention.query_key_value.bias.data)
def attention_extra(self, frame_hidden_state, layer_id, attn_dropout, text_hidden_state=None,
text_attn_mask=None, mode_sequential=True):
# pb relax
swin_pb_relax = True
alpha = 16
# frame_hidden_state [batchsize, frame_num*frame_size, n_head*hiddensize_perhead]
if not self.mask_initialized:
self.attn_mask_sequential = self.attn_mask_sequential.to(device=frame_hidden_state.device, dtype=frame_hidden_state.dtype)
self.causal_mask_sequential = self.causal_mask_sequential.to(device=frame_hidden_state.device, dtype=frame_hidden_state.dtype)
self.attn_mask_interp = self.attn_mask_interp.to(device=frame_hidden_state.device, dtype=frame_hidden_state.dtype)
self.causal_mask_interp = self.causal_mask_interp.to(device=frame_hidden_state.device, dtype=frame_hidden_state.dtype)
self.mask_initialized = True
b0, s1, h0 = frame_hidden_state.shape
h = h0 // self.n_head
frame_len = self.frame_resolution * self.frame_resolution
frame_num = s1 // frame_len
assert frame_num*frame_len == s1
wind_square = self.window_size * self.window_size
nW = frame_len // wind_square
bswin = b0 * nW
causal_mask = self.causal_mask_sequential if mode_sequential else self.causal_mask_interp
attn_mask = self.attn_mask_sequential if mode_sequential else self.attn_mask_interp
if text_hidden_state is not None:
s0 = text_hidden_state.shape[1]
qkv_text = self.query_key_value[layer_id](text_hidden_state).reshape(b0, s0, 3, self.n_head, h).permute(2, 0, 3, 1, 4) #[3, b0, n_head, s0, h]
q_text, k_text, v_text = qkv_text[0], qkv_text[1], qkv_text[2]
# shift
frame_hidden_state = frame_hidden_state.reshape(b0, frame_num, self.frame_resolution, self.frame_resolution, h0)
if self.shift_sizes[layer_id%2] > 0:
frame_hidden_state = torch.roll(frame_hidden_state, shifts=(-self.shift_sizes[layer_id%2], -self.shift_sizes[layer_id%2]), dims=(2,3))
# window partition
frame_hidden_state = window_partition(frame_hidden_state, self.window_size).reshape(bswin, frame_num*wind_square, h0)
qkv = self.query_key_value[layer_id](frame_hidden_state).reshape(bswin, frame_num*wind_square, 3, self.n_head, h)\
.permute(2, 0, 3, 1, 4) #[3, bswin, n_head, frame_num*wind_size*wind_size, h]
q, k, v = qkv[0], qkv[1], qkv[2]
# pb-relax
if swin_pb_relax:
attn = torch.matmul(q / (math.sqrt(h)*alpha), k.transpose(-1, -2))
else:
attn = torch.matmul(q / math.sqrt(h), k.transpose(-1, -2))
if self.shift_sizes[layer_id%2] > 0:
# attn = attn.view(bswin // nW, nW, self.n_head, frame_num*wind_square, frame_num*wind_square) + self.attn_mask.unsqueeze(1).unsqueeze(0)
attn = torch.mul(attn.view(bswin // nW, nW, self.n_head, frame_num*wind_square, frame_num*wind_square), attn_mask)\
- 10000.0 * (1.0 - attn_mask)
attn = attn.view(bswin, self.n_head, frame_num*wind_square, frame_num*wind_square)
else:
attn = torch.mul(attn.view(bswin // nW, nW, self.n_head, frame_num*wind_square, frame_num*wind_square), causal_mask)\
- 10000.0 * (1.0 - causal_mask)
attn = attn.view(bswin, self.n_head, frame_num*wind_square, frame_num*wind_square)
if swin_pb_relax:
swin_pb_relax_const = torch.max(attn.reshape(bswin, self.n_head, -1), dim=-1, keepdim=True)[0].detach().unsqueeze(-1)
attn = (attn - swin_pb_relax_const)*alpha
if text_hidden_state is None:
attn = F.softmax(attn, dim=-1)
if attn_dropout is not None:
with get_cuda_rng_tracker().fork():
attn = attn_dropout(attn)
context_swin = torch.matmul(attn, v).permute(0, 2, 1, 3).reshape(bswin, frame_num, self.window_size, self.window_size, h0)
else:
assert text_attn_mask is not None
text_attn_mask = text_attn_mask.unsqueeze(2).unsqueeze(2)
# pb-relax
if swin_pb_relax:
attn_frame2text = torch.matmul(q.reshape(b0, -1, self.n_head, frame_num*wind_square, h) / (math.sqrt(h)*alpha), k_text.unsqueeze(1).transpose(-1, -2))
attn_frame2text = (attn_frame2text-swin_pb_relax_const.reshape(b0, -1, self.n_head, 1, 1))*alpha
else:
attn_frame2text = torch.matmul(q.reshape(b0, -1, self.n_head, frame_num*wind_square, h) / math.sqrt(h), k_text.unsqueeze(1).transpose(-1, -2))
attn_frame2text = torch.mul(text_attn_mask, attn_frame2text) - 10000.0 * (1.0 - text_attn_mask)
attn_frame2text = attn_frame2text.reshape(bswin, self.n_head, frame_num*wind_square, s0)
attn = torch.cat((attn, attn_frame2text), dim=-1)
attn = F.softmax(attn, dim=-1)
if attn_dropout is not None:
with get_cuda_rng_tracker().fork():
attn = attn_dropout(attn)
context_swin = (torch.matmul(attn[..., :-s0], v) +
torch.matmul(attn[..., -s0:].reshape(b0, -1, self.n_head,frame_num*wind_square, s0), v_text.unsqueeze(1))\
.reshape(bswin, self.n_head, frame_num*wind_square, h))\
.permute(0, 2, 1, 3).reshape(bswin, frame_num, self.window_size, self.window_size, h0)
context_swin = window_reverse(context_swin, self.window_size, self.frame_resolution, self.frame_resolution)
# reverse cycle shift
if self.shift_sizes[layer_id%2] > 0:
context_swin = torch.roll(context_swin, shifts=(self.shift_sizes[layer_id%2], self.shift_sizes[layer_id%2]), dims=(2,3))
context_swin = context_swin.reshape(b0, s1, h0)
return context_swin
class FullAttentionMixin(BaseMixin):
def __init__(self, num_layers,
hidden_size,
frame_resolution,
n_head,
frame_num,
init_method=unscaled_init_method(0.02),
output_layer_init_method=unscaled_init_method(0.02),
):
super(FullAttentionMixin, self).__init__()
self.num_layers = num_layers # replace attention in the LAST n layers
self.query_key_value = torch.nn.ModuleList(
[ColumnParallelLinear(hidden_size, 3*hidden_size,stride=3,
gather_output=False,init_method=init_method)
for layer_id in range(num_layers)
])
self.dense = torch.nn.ModuleList(
[RowParallelLinear(
hidden_size,
hidden_size,
input_is_parallel=True,
init_method=output_layer_init_method,
bias=True,
module=self,
name="dense",)
for layer_id in range(num_layers)
])
self.n_head = n_head
self.frame_resolution = frame_resolution
self.frame_len = frame_resolution * frame_resolution
self.causal_mask = torch.ones(1, 1, self.frame_len*frame_num, self.frame_len*frame_num).tril()
self.mask_initialized = False
self.attn_distribution = torch.nn.ParameterList([
torch.nn.Parameter(torch.zeros(hidden_size))
for _ in range(num_layers)
])
def reinit(self, *pre_mixins):
start_layer = len(self.transformer.layers) - self.num_layers
assert start_layer >= 0
for layer_id in range(self.num_layers):
base_attention = self.transformer.layers[start_layer + layer_id].attention
self.query_key_value[layer_id].weight.data.copy_(base_attention.query_key_value.weight.data)
self.query_key_value[layer_id].bias.data.copy_(base_attention.query_key_value.bias.data)
def attention_extra(self, frame_hidden_state, layer_id, attn_dropout, text_hidden_state=None,
text_attn_mask=None, mode_sequential=False):
# pb relax
# frame_hidden_state [batchsize, frame_num*frame_size, n_head*hiddensize_perhead]
assert mode_sequential == True # only
swin_pb_relax = True
alpha = 16
if not self.mask_initialized:
self.causal_mask = self.causal_mask.to(device=frame_hidden_state.device, dtype=frame_hidden_state.dtype)
self.mask_initialized = True
b0, s1, h0 = frame_hidden_state.shape
h = h0 // self.n_head
frame_len = self.frame_resolution * self.frame_resolution
frame_num = s1 // frame_len
assert frame_num*frame_len == s1
qkv = self.query_key_value[layer_id](frame_hidden_state).reshape(b0, s1, 3, self.n_head, h)\
.permute(2, 0, 3, 1, 4) #[3, b0, n_head, s1, h]
q, k, v = qkv[0], qkv[1], qkv[2]
# frames-to-frames
if swin_pb_relax:
attn = torch.matmul(q / (math.sqrt(h)*alpha), k.transpose(-1, -2))
else:
attn = torch.matmul(q / math.sqrt(h), k.transpose(-1, -2))
attn = torch.mul(attn, self.causal_mask) - 10000.0 * (1.0 - self.causal_mask)
if swin_pb_relax:
swin_pb_relax_const = torch.max(attn.reshape(b0, self.n_head, -1), dim=-1, keepdim=True)[0].detach().unsqueeze(-1)
attn = (attn - swin_pb_relax_const)*alpha
if text_hidden_state is None:
attn = F.softmax(attn, dim=-1)
if attn_dropout is not None:
with get_cuda_rng_tracker().fork():
attn = attn_dropout(attn)
context_swin = torch.matmul(attn, v).permute(0, 2, 1, 3).reshape(b0, s1, h0)
else:
# frame-to-text
assert text_attn_mask is not None
s0 = text_hidden_state.shape[1]
qkv_text = self.query_key_value[layer_id](text_hidden_state).reshape(b0, s0, 3, self.n_head, h).permute(2, 0, 3, 1, 4) #[3, b0, n_head, s0, h]
q_text, k_text, v_text = qkv_text[0], qkv_text[1], qkv_text[2]
text_attn_mask = text_attn_mask.unsqueeze(2)
if swin_pb_relax:
attn_frame2text = torch.matmul(q.reshape(b0, self.n_head, s1, h) / (math.sqrt(h)*alpha), k_text.transpose(-1, -2))
attn_frame2text = (attn_frame2text-swin_pb_relax_const.reshape(b0, self.n_head, 1, 1))*alpha
else:
attn_frame2text = torch.matmul(q.reshape(b0, self.n_head, s1, h) / math.sqrt(h), k_text.transpose(-1, -2))
attn_frame2text = torch.mul(text_attn_mask, attn_frame2text) - 10000.0 * (1.0 - text_attn_mask)
attn_frame2text = attn_frame2text.reshape(b0, self.n_head, s1, s0)
attn = torch.cat((attn, attn_frame2text), dim=-1)
attn = F.softmax(attn, dim=-1)
if attn_dropout is not None:
with get_cuda_rng_tracker().fork():
attn = attn_dropout(attn)
context_frame = (torch.matmul(attn[..., :-s0], v) +
torch.matmul(attn[..., -s0:].reshape(b0, self.n_head,s1, s0), v_text))\
.permute(0, 2, 1, 3).reshape(b0, s1, h0)
return context_frame
def attention_localframe_and_text(q0, k0, v0, attention_mask_totxt, attention_mask_local,
n_head, text_len, frame_len, frame_num, attention_dropout=None, layer_id=0, **kwargs):
b, s0, h0 = q0.shape
s1 = s0 - text_len
h = h0 // n_head
assert q0.shape[1] == v0.shape[1] == k0.shape[1] == text_len+frame_len*frame_num
# attention_mask_totxt [b, 1, 1, text_len]
# attention_mask_local [1, 1, frame_num, frame_len, frame_len]
# attention_mask: [1, 1, text_len+frame_len, text_len+frame_len]
q0 = q0.reshape(b, s0, n_head, h).permute(0, 2, 1, 3)
v0 = v0.reshape(b, s0, n_head, h).permute(0, 2, 1, 3)
k0 = k0.reshape(b, s0, n_head, h).permute(0, 2, 1, 3)
k0T = k0.transpose(-1, -2)
# score: any2text
score_any2text = torch.matmul(q0 / math.sqrt(q0.shape[-1]), k0T[..., :text_len])
score_any2text_part1 = torch.mul(score_any2text[..., :text_len, :], attention_mask_totxt) \
- 10000.0 * (1.0 - attention_mask_totxt)
score_any2text_part2 = torch.mul(score_any2text[..., text_len:, :], attention_mask_totxt) - \
10000.0 * (1.0 - attention_mask_totxt)
# score: frame local
q0_frame = q0[:, :, text_len:].reshape(b, n_head, frame_num, frame_len, h)
v0_frame = v0[:, :, text_len:].reshape(b, n_head, frame_num, frame_len, h)
k0T_frame = k0[:, :, text_len:].reshape(b, n_head, frame_num, frame_len, h).transpose(-1, -2)
score_frame_local0 = torch.matmul(q0_frame / math.sqrt(q0_frame.shape[-1]), k0T_frame)
score_frame_local0 = torch.mul(score_frame_local0, attention_mask_local) \
- 10000.0 * (1.0 - attention_mask_local)
# context for frame
score_frame_all = torch.cat((score_any2text_part2,
score_frame_local0.view(b, n_head, s1, frame_len)), dim=-1)
attention_probs_frame = F.softmax(score_frame_all, dim=-1)
if attention_dropout is not None:
with get_cuda_rng_tracker().fork():
attention_probs_frame = attention_dropout(attention_probs_frame)
context_frame2text = torch.matmul(attention_probs_frame[..., :text_len], v0[..., :text_len, :]) # [b, n_head, s1, h]
context_frame_local0 = torch.matmul(attention_probs_frame[..., text_len:text_len+frame_len].\
view(b, n_head, frame_num, frame_len, frame_len), v0_frame).view(b, n_head, s1, h)
context_frame = (context_frame2text + context_frame_local0).transpose(1, 2).reshape(b, s1, h0)
# context for text
attention_probs_text = F.softmax(score_any2text_part1, dim=-1)
if attention_dropout is not None:
with get_cuda_rng_tracker().fork():
attention_probs_text = attention_dropout(attention_probs_text)
context_text2text = torch.matmul(attention_probs_text, v0[..., :text_len, :])
context_text2text = context_text2text.transpose(1, 2).reshape(b, text_len, h0)
return context_text2text, context_frame
class CogVideoModel(BaseModel):
def __init__(self, args, transformer=None, parallel_output=True):
super().__init__(args, transformer=transformer, parallel_output=parallel_output)
self.stage = args.cogvideo_stage # 1 or 2
self.mode_sequential = True if self.stage==1 else False
self.layout = args.layout # [64, 64+400, 64+5*400]
self.n_head = args.num_attention_heads
frame_resolution = int(math.sqrt(self.layout[1]-self.layout[0]))
frame_num = (args.layout[2]-args.layout[0])//(args.layout[1]-args.layout[0])
frame_len = self.layout[1]-self.layout[0]
self.add_mixin('extra_position_embedding', PositionEmbeddingMixin(
args.additional_seqlen, args.hidden_size
))
if args.window_size == -1:
# full attention
assert self.stage == 1
self.add_mixin('attention_plus', FullAttentionMixin(
num_layers=args.num_layers,
hidden_size=args.hidden_size,
frame_resolution=frame_resolution,
n_head=args.num_attention_heads,
frame_num=frame_num,
))
else:
self.add_mixin('attention_plus', WindowAttentionMixin(
num_layers=args.num_layers,
hidden_size=args.hidden_size,
frame_resolution=frame_resolution,
window_size=args.window_size,
shift_size=args.window_size//2,
n_head=args.num_attention_heads,
frame_num=frame_num,
))
# attention_mask_local
self.attention_mask_local_sequential = torch.ones(1, 1, frame_num, frame_len, frame_len).tril().unsqueeze(0)
self.attention_mask_local_interp = torch.ones(1, 1, frame_num, frame_len, frame_len)
for idx in range(1, frame_num, 2):
self.attention_mask_local_interp[:, :, idx:idx+1].tril_()
self.attention_mask_local_interp = self.attention_mask_local_interp.unsqueeze(0)
self.mask_initialized = False
@classmethod
def add_model_specific_args(cls, parser):
group = parser.add_argument_group('CogVideoModel', 'CogVideo model configurations')
group.add_argument("--layout", type=str, default='64, 464, 2064', help='text_len, textlen+frame_len, textlen+frame_len*frame_num')
group.add_argument("--window-size", type=int, default=10, help="swin attention's window size in temperal channel, -1 represents full attention")
group.add_argument("--additional-seqlen", type=int, default=2000)
group.add_argument("--cogvideo-stage", type=int, default=1, choices=[1,2])
return parser
def disable_untrainable_params(self):
self.transformer.requires_grad_(False)
def position_embedding_forward(self, position_ids, **kw_args):
position = position_ids[..., :(64+400)]
position_plus = position_ids[..., (64+400):]
position_embeddings = torch.cat(
(
self.transformer.position_embeddings(position),
self.get_mixin('extra_position_embedding').position_embeddings(position_plus-(512+400))
),
dim=-2
)
return position_embeddings
def attention_forward(self, hidden_states, mask, layer_id, **kw_args):
# mask.shape=[bs, 1, 1, 64]
if not self.mask_initialized:
self.attention_mask_local_sequential = self.attention_mask_local_sequential.to(device=hidden_states.device, dtype=hidden_states.dtype)
self.attention_mask_local_interp = self.attention_mask_local_interp.to(device=hidden_states.device, dtype=hidden_states.dtype)
self.mask_initialized = True
attn_module = self.transformer.layers[layer_id].attention
hidden_size = hidden_states.shape[-1]
bs = hidden_states.shape[0]
# base model qkv
mixed_raw_layer = attn_module.query_key_value(hidden_states)
q0, k0, v0 = split_tensor_along_last_dim(mixed_raw_layer, 3)
dropout_fn = self.transformer.layers[layer_id].attention.attention_dropout if self.training else None
attention_mask_local = self.attention_mask_local_sequential if self.mode_sequential else self.attention_mask_local_interp
context_text, context_frame_local_text = attention_localframe_and_text(
q0, k0, v0,
attention_mask_totxt=mask,
attention_mask_local=attention_mask_local,
n_head=attn_module.num_attention_heads_per_partition,
text_len=self.layout[0],
frame_len=self.layout[1]-self.layout[0],
frame_num=(self.layout[2]-self.layout[0])//(self.layout[1]-self.layout[0]),
attention_dropout=dropout_fn,
layer_id=layer_id,
)
context_frame_swin = self.get_mixin('attention_plus').attention_extra(
hidden_states[:, self.layout[0]:], layer_id, dropout_fn,
text_hidden_state=hidden_states[:, :self.layout[0]],
text_attn_mask=mask[..., 0, :],
mode_sequential=self.mode_sequential)
attn_distrib = torch.sigmoid(self.get_mixin('attention_plus').attn_distribution[layer_id])
attn_distrib = attn_distrib.unsqueeze(0).unsqueeze(0)
output_text = attn_module.dense(context_text)
output_frame = torch.mul(attn_module.dense(context_frame_local_text), attn_distrib)\
+torch.mul(self.get_mixin('attention_plus').dense[layer_id](context_frame_swin), 1-attn_distrib)
output = torch.cat((output_text, output_frame), dim=-2)
return output |