|
import av |
|
import torch |
|
import numpy as np |
|
from huggingface_hub import hf_hub_download |
|
from transformers import LlavaNextVideoProcessor, LlavaNextVideoForConditionalGeneration |
|
|
|
|
|
|
|
|
|
model_id = "llava-hf/LLaVA-NeXT-Video-7B-hf" |
|
|
|
|
|
|
|
model = LlavaNextVideoForConditionalGeneration.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16, |
|
low_cpu_mem_usage=True, |
|
).to(0) |
|
|
|
processor = LlavaNextVideoProcessor.from_pretrained(model_id) |
|
|
|
def read_video_pyav(container, indices): |
|
''' |
|
Decode the video with PyAV decoder. |
|
Args: |
|
container (`av.container.input.InputContainer`): PyAV container. |
|
indices (`List[int]`): List of frame indices to decode. |
|
Returns: |
|
result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). |
|
''' |
|
frames = [] |
|
container.seek(0) |
|
start_index = indices[0] |
|
end_index = indices[-1] |
|
for i, frame in enumerate(container.decode(video=0)): |
|
if i > end_index: |
|
break |
|
if i >= start_index and i in indices: |
|
frames.append(frame) |
|
return np.stack([x.to_ndarray(format="rgb24") for x in frames]) |
|
|
|
|
|
|
|
|
|
conversation = [ |
|
{ |
|
|
|
"role": "user", |
|
"content": [ |
|
{"type": "text", "text": "What is happening in this video?"}, |
|
{"type": "video"}, |
|
], |
|
}, |
|
] |
|
|
|
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) |
|
|
|
video_path = hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="sample_demo_1.mp4", repo_type="dataset") |
|
|
|
container = av.open(video_path) |
|
|
|
|
|
total_frames = container.streams.video[0].frames |
|
indices = np.arange(0, total_frames, total_frames / 8).astype(int) |
|
clip = read_video_pyav(container, indices) |
|
inputs_video = processor(text=prompt, videos=clip, padding=True, return_tensors="pt").to(model.device) |
|
|
|
output = model.generate(**inputs_video, max_new_tokens=200, do_sample=False) |
|
print(processor.decode(output[0][2:], skip_special_tokens=True)) |
|
|
|
|
|
|