Update tts.py
Browse files
tts.py
CHANGED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import torchaudio
|
| 4 |
+
from TTS.tts.configs.xtts_config import XttsConfig
|
| 5 |
+
from TTS.tts.models.xtts import Xtts
|
| 6 |
+
from huggingface_hub import snapshot_download, hf_hub_download
|
| 7 |
+
from vinorm import TTSnorm
|
| 8 |
+
|
| 9 |
+
def generate_speech(text, language="vi", speaker_wav=None):
|
| 10 |
+
# Tải mô hình nếu chưa được tải
|
| 11 |
+
checkpoint_dir = "model/"
|
| 12 |
+
repo_id = "capleaf/viXTTS"
|
| 13 |
+
use_deepspeed = False
|
| 14 |
+
|
| 15 |
+
os.makedirs(checkpoint_dir, exist_ok=True)
|
| 16 |
+
|
| 17 |
+
required_files = ["model.pth", "config.json", "vocab.json", "speakers_xtts.pth"]
|
| 18 |
+
files_in_dir = os.listdir(checkpoint_dir)
|
| 19 |
+
if not all(file in files_in_dir for file in required_files):
|
| 20 |
+
snapshot_download(
|
| 21 |
+
repo_id=repo_id,
|
| 22 |
+
repo_type="model",
|
| 23 |
+
local_dir=checkpoint_dir,
|
| 24 |
+
)
|
| 25 |
+
hf_hub_download(
|
| 26 |
+
repo_id="coqui/XTTS-v2",
|
| 27 |
+
filename="speakers_xtts.pth",
|
| 28 |
+
local_dir=checkpoint_dir,
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
# Cấu hình và tải mô hình
|
| 32 |
+
xtts_config = os.path.join(checkpoint_dir, "config.json")
|
| 33 |
+
config = XttsConfig()
|
| 34 |
+
config.load_json(xtts_config)
|
| 35 |
+
MODEL = Xtts.init_from_config(config)
|
| 36 |
+
MODEL.load_checkpoint(config, checkpoint_dir=checkpoint_dir, use_deepspeed=use_deepspeed)
|
| 37 |
+
|
| 38 |
+
if torch.cuda.is_available():
|
| 39 |
+
MODEL.cuda()
|
| 40 |
+
|
| 41 |
+
# Chuẩn hóa văn bản
|
| 42 |
+
normalized_text = TTSnorm(text)
|
| 43 |
+
|
| 44 |
+
# Tạo giọng nói
|
| 45 |
+
with torch.no_grad():
|
| 46 |
+
gpt_cond_latent, speaker_embedding = MODEL.get_conditioning_latents(audio_path=speaker_wav)
|
| 47 |
+
out = MODEL.inference(
|
| 48 |
+
normalized_text,
|
| 49 |
+
language,
|
| 50 |
+
gpt_cond_latent,
|
| 51 |
+
speaker_embedding,
|
| 52 |
+
temperature=0.7,
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
# Lưu file âm thanh
|
| 56 |
+
output_file = "output.wav"
|
| 57 |
+
torchaudio.save(output_file, torch.tensor(out["wav"]).unsqueeze(0), 22050)
|
| 58 |
+
return output_file
|