import gradio as gr import pandas as pd from src.about import ( CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE, ) # Simplified DataFrame for the leaderboard data = { "Model": [ "Handwritten TAG", "Zero-shot Text2SQL", "Zero-shot Text2SQL + LM Generation", "RAG (E5)", "RAG (E5) + LM Rerank", ], "Execution Accuracy": ["55%", "17%", "13%", "0%", "2%"], } # Create a DataFrame leaderboard_df = pd.DataFrame(data) # Convert Execution Accuracy to numeric for sorting leaderboard_df["Execution Accuracy (numeric)"] = ( leaderboard_df["Execution Accuracy"].str.rstrip("%").astype(float) ) leaderboard_df = leaderboard_df.sort_values( "Execution Accuracy (numeric)", ascending=False ).reset_index(drop=True) # Add the Rank column leaderboard_df.insert(0, "Rank", leaderboard_df.index + 1) # Drop the numeric column for display leaderboard_df = leaderboard_df.drop(columns=["Execution Accuracy (numeric)"]) # Add hyperlinks to the Model column def hyperlink_model(model): base_url = "https://github.com/TAG-Research/TAG-Bench/tree/main" return f'{model}' leaderboard_df["Model"] = leaderboard_df["Model"].apply(hyperlink_model) # Simplified Gradio app with gr.Blocks() as demo: gr.HTML( """
Comparing baseline approaches for structured data queries