import gradio as gr import pandas as pd from src.about import ( CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE, ) # Simplified DataFrame for the leaderboard data = { "Model": [ "Handwritten TAG", "Zero-shot Text2SQL", "Zero-shot Text2SQL + LM Generation", "RAG (E5)", "RAG (E5) + LM Rerank" ], "Code": [ "", # Handwritten TAG doesn't have a code link "", # Zero-shot Text2SQL doesn't have a code link "", # Zero-shot Text2SQL + LM Generation doesn't have a code link "", # RAG (E5) doesn't have a code link "" # RAG (E5) + LM Rerank doesn't have a code link ], "Execution Accuracy": [ "55%", # Handwritten TAG "17%", # Zero-shot Text2SQL "13%", # Zero-shot Text2SQL + LM Generation "0%", # RAG (E5) "2%" # RAG (E5) + LM Rerank ] } leaderboard_df = pd.DataFrame(data) # Simplified Gradio app with gr.Blocks() as demo: gr.HTML(TITLE) gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): # Highlight the top row in green for "Handwritten TAG" with gr.Row(): gr.Dataframe( value=leaderboard_df, headers=["Model", "Code", "Execution Accuracy"], datatype=["str", "str", "str"], row_count=(5, "dynamic"), wrap=True, elem_id="leaderboard", type="pandas" ) with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2): gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") with gr.TabItem("🚀 Submission Instructions ", elem_id="llm-benchmark-tab-table", id=3): gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") demo.launch()