Spaces:
Running
Running
leaderboard updates
Browse files- app.py +74 -25
- src/about.py +4 -4
app.py
CHANGED
@@ -10,62 +10,56 @@ from src.about import (
|
|
10 |
TITLE,
|
11 |
)
|
12 |
|
13 |
-
# Simplified DataFrame for the leaderboard
|
14 |
data = {
|
15 |
-
"
|
16 |
"Handwritten TAG",
|
17 |
-
"Zero-shot Text2SQL",
|
18 |
-
"Zero-shot Text2SQL + LM Generation",
|
19 |
"RAG (E5)",
|
20 |
"RAG (E5) + LM Rerank",
|
21 |
],
|
22 |
-
|
|
|
23 |
}
|
24 |
|
25 |
-
# Create a DataFrame
|
26 |
leaderboard_df = pd.DataFrame(data)
|
27 |
|
28 |
-
# Convert Execution Accuracy to numeric for sorting
|
29 |
-
leaderboard_df["Execution Accuracy (numeric)"] = (
|
30 |
-
leaderboard_df["Execution Accuracy"].str.rstrip("%").astype(float)
|
31 |
-
)
|
32 |
leaderboard_df = leaderboard_df.sort_values(
|
33 |
-
"Execution Accuracy
|
34 |
).reset_index(drop=True)
|
35 |
-
|
36 |
-
# Add the Rank column
|
37 |
leaderboard_df.insert(0, "Rank", leaderboard_df.index + 1)
|
38 |
|
39 |
-
# Drop the numeric column for display
|
40 |
-
leaderboard_df = leaderboard_df.drop(columns=["Execution Accuracy (numeric)"])
|
41 |
|
42 |
-
|
43 |
-
def hyperlink_model(model):
|
44 |
base_url = "https://github.com/TAG-Research/TAG-Bench/tree/main"
|
|
|
|
|
|
|
|
|
45 |
return f'<a href="{base_url}" target="_blank">{model}</a>'
|
46 |
|
47 |
-
leaderboard_df["Model"] = leaderboard_df["Model"].apply(hyperlink_model)
|
48 |
|
49 |
-
|
|
|
|
|
|
|
50 |
with gr.Blocks() as demo:
|
51 |
gr.HTML(
|
52 |
"""
|
53 |
<div style="text-align: center;">
|
54 |
<h1 style="font-size: 2.5rem; margin-bottom: 0.5rem;">TAG Leaderboard</h1>
|
55 |
-
<p style="font-size: 1.25rem; color: gray;">
|
56 |
</div>
|
57 |
"""
|
58 |
)
|
59 |
-
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
60 |
|
61 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
62 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
63 |
-
# Highlight the top row in green for "Handwritten TAG"
|
64 |
with gr.Row():
|
65 |
gr.Dataframe(
|
66 |
value=leaderboard_df,
|
67 |
-
headers=["
|
68 |
-
datatype=["str", "html",
|
69 |
row_count=(5, "dynamic"),
|
70 |
wrap=True,
|
71 |
elem_id="leaderboard",
|
@@ -76,7 +70,62 @@ with gr.Blocks() as demo:
|
|
76 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
77 |
|
78 |
with gr.TabItem("🚀 Submission Instructions ", elem_id="llm-benchmark-tab-table", id=3):
|
79 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
|
82 |
demo.launch()
|
|
|
10 |
TITLE,
|
11 |
)
|
12 |
|
|
|
13 |
data = {
|
14 |
+
"Method": [
|
15 |
"Handwritten TAG",
|
16 |
+
"Zero-shot Text2SQL (llama-3.1-70B)",
|
17 |
+
"Zero-shot Text2SQL + LM Generation (llama-3.1-70B)",
|
18 |
"RAG (E5)",
|
19 |
"RAG (E5) + LM Rerank",
|
20 |
],
|
21 |
+
# "Model": ["meta-llama/Llama-3.1-70B"] * 5,
|
22 |
+
"Execution Accuracy": [55.0, 17.0, 13.0, 0.0, 2.0],
|
23 |
}
|
24 |
|
|
|
25 |
leaderboard_df = pd.DataFrame(data)
|
26 |
|
|
|
|
|
|
|
|
|
27 |
leaderboard_df = leaderboard_df.sort_values(
|
28 |
+
"Execution Accuracy", ascending=False
|
29 |
).reset_index(drop=True)
|
|
|
|
|
30 |
leaderboard_df.insert(0, "Rank", leaderboard_df.index + 1)
|
31 |
|
|
|
|
|
32 |
|
33 |
+
def hyperlink_method(method):
|
|
|
34 |
base_url = "https://github.com/TAG-Research/TAG-Bench/tree/main"
|
35 |
+
return f'<a href="{base_url}" target="_blank">{method}</a>'
|
36 |
+
|
37 |
+
def hyperlink_model(model):
|
38 |
+
base_url = "https://huggingface.co/meta-llama/Llama-3.1-70B"
|
39 |
return f'<a href="{base_url}" target="_blank">{model}</a>'
|
40 |
|
|
|
41 |
|
42 |
+
leaderboard_df["Method"] = leaderboard_df["Method"].apply(hyperlink_method)
|
43 |
+
# leaderboard_df["Model"] = leaderboard_df["Model"].apply(hyperlink_model)
|
44 |
+
|
45 |
+
|
46 |
with gr.Blocks() as demo:
|
47 |
gr.HTML(
|
48 |
"""
|
49 |
<div style="text-align: center;">
|
50 |
<h1 style="font-size: 2.5rem; margin-bottom: 0.5rem;">TAG Leaderboard</h1>
|
51 |
+
<p style="font-size: 1.25rem; color: gray;">Evaluating complex natural language queries over structured data.</p>
|
52 |
</div>
|
53 |
"""
|
54 |
)
|
|
|
55 |
|
56 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
57 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
|
|
58 |
with gr.Row():
|
59 |
gr.Dataframe(
|
60 |
value=leaderboard_df,
|
61 |
+
headers=["Rank", "Method", "Execution Accuracy"],
|
62 |
+
datatype=["str", "html", "float"],
|
63 |
row_count=(5, "dynamic"),
|
64 |
wrap=True,
|
65 |
elem_id="leaderboard",
|
|
|
70 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
71 |
|
72 |
with gr.TabItem("🚀 Submission Instructions ", elem_id="llm-benchmark-tab-table", id=3):
|
73 |
+
with gr.Accordion("1️⃣ Required Materials", open=True):
|
74 |
+
gr.Markdown(
|
75 |
+
"""
|
76 |
+
Ensure the following files are included in your submission:
|
77 |
+
- **output.json**: File containing the evaluation outputs generated by your model. Please refer to [] for format instructions.
|
78 |
+
- **requirements.txt**: A list of dependencies needed to run your model or script.
|
79 |
+
- **README.md**: A detailed description of your submission, including:
|
80 |
+
- Purpose and overview of the submission.
|
81 |
+
- Instructions to reproduce the results.
|
82 |
+
- Any additional notes for evaluators.
|
83 |
+
- **Model/Keys**: Upload your models or API keys to [Hugging Face](https://huggingface.co/) if they are not publicly accessible.
|
84 |
+
|
85 |
+
**Note**: Submissions missing any of these materials will not be processed.
|
86 |
+
"""
|
87 |
+
)
|
88 |
+
|
89 |
+
# Section 2: Submission Frequency
|
90 |
+
with gr.Accordion("2️⃣ Submission Frequency", open=False):
|
91 |
+
gr.Markdown(
|
92 |
+
"""
|
93 |
+
- Submissions are accepted **once a month** to ensure sufficient evaluation bandwidth.
|
94 |
+
- Plan your submission timeline accordingly to avoid delays.
|
95 |
+
"""
|
96 |
+
)
|
97 |
+
|
98 |
+
# Section 3: How to Upload Materials
|
99 |
+
with gr.Accordion("3️⃣ How to Upload Materials", open=False):
|
100 |
+
gr.Markdown(
|
101 |
+
"""
|
102 |
+
Follow these steps to upload your materials:
|
103 |
+
1. Compress all files in the code into a single `.zip` file, or provide a public repository to refer to.
|
104 |
+
2. Email the `.zip` file or repositoty link to our email [email].
|
105 |
+
"""
|
106 |
+
)
|
107 |
+
|
108 |
+
# Section 4: Submission Process
|
109 |
+
with gr.Accordion("4️⃣ Submission Process", open=False):
|
110 |
+
gr.Markdown(
|
111 |
+
"""
|
112 |
+
After uploading your materials:
|
113 |
+
-
|
114 |
+
- Provide accurate contact information for follow-ups.
|
115 |
+
- Double-check your materials for completeness to avoid processing delays.
|
116 |
+
|
117 |
+
**Important:** Your submission will be added to the evaluation queue. Depending on the queue size, evaluations may take up to a few weeks.
|
118 |
+
"""
|
119 |
+
)
|
120 |
+
|
121 |
+
# Footer
|
122 |
+
gr.Markdown(
|
123 |
+
"""
|
124 |
+
<div style="text-align: center; margin-top: 2rem;">
|
125 |
+
For further assistance, reach out to [email] with questions.
|
126 |
+
</div>
|
127 |
+
"""
|
128 |
+
)
|
129 |
|
130 |
|
131 |
demo.launch()
|
src/about.py
CHANGED
@@ -30,11 +30,11 @@ Intro text
|
|
30 |
|
31 |
# Which evaluations are you running? how can people reproduce what you have?
|
32 |
LLM_BENCHMARKS_TEXT = f"""
|
33 |
-
##
|
34 |
-
|
35 |
-
## Reproducibility
|
36 |
-
To reproduce our results, here is the commands you can run:
|
37 |
|
|
|
|
|
38 |
"""
|
39 |
|
40 |
EVALUATION_QUEUE_TEXT = """
|
|
|
30 |
|
31 |
# Which evaluations are you running? how can people reproduce what you have?
|
32 |
LLM_BENCHMARKS_TEXT = f"""
|
33 |
+
## What does the TAG leaderboard evaluate?
|
34 |
+
In this leaderboard, you'll find execution accuracy comparisons of table question answering approaches on [TAG-Bench] (https://github.com/TAG-Research/TAG-Bench/tree/main). TAG-Bench contains complex queries requiring world knowledge or semantic reasoning that goes beyond the information explicitly available in the database.
|
|
|
|
|
35 |
|
36 |
+
## How is accuracy measured?
|
37 |
+
Execution accuracy is measured as the number of exact matches to our annotated ground truth answers which are hand-labeled by experts.
|
38 |
"""
|
39 |
|
40 |
EVALUATION_QUEUE_TEXT = """
|