T145's picture
Update the value heading to accurately reflect the metric
60db129 verified
raw
history blame
7.77 kB
import os
import gradio as gr
import pandas as pd
from datasets import load_dataset
from huggingface_hub import (
CommitOperationAdd,
EvalResult,
ModelCard,
RepoUrl,
create_commit,
)
from huggingface_hub.repocard_data import eval_results_to_model_index
from pytablewriter import MarkdownTableWriter
BOT_HF_TOKEN = os.getenv("BOT_HF_TOKEN")
def search(df, value):
result_df = df[df["fullname"] == value]
return result_df.iloc[0].to_dict() if not result_df.empty else None
def get_details_url(repo):
author, model = repo.split("/")
return f"https://huggingface.co/datasets/open-llm-leaderboard/{author}__{model}-details"
def get_contents_url(repo):
return f"https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q={repo}"
def get_query_url(repo):
return f"https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query={repo}"
def get_task_summary(results):
return {
"IFEval": {
"dataset_type": "HuggingFaceH4/ifeval",
"dataset_name": "IFEval (0-Shot)",
"metric_type": "inst_level_strict_acc and prompt_level_strict_acc",
"metric_value": round(results["IFEval"], 2),
"dataset_config": None, # don't know
"dataset_split": None, # don't know
"dataset_revision": None,
"dataset_args": {"num_few_shot": 0},
"metric_name": "strict accuracy",
},
"BBH": {
"dataset_type": "BBH",
"dataset_name": "BBH (3-Shot)",
"metric_type": "acc_norm",
"metric_value": round(results["BBH"], 2),
"dataset_config": None, # don't know
"dataset_split": None, # don't know
"dataset_revision": None,
"dataset_args": {"num_few_shot": 3},
"metric_name": "normalized accuracy",
},
"MATH Lvl 5": {
"dataset_type": "hendrycks/competition_math",
"dataset_name": "MATH Lvl 5 (4-Shot)",
"metric_type": "exact_match",
"metric_value": round(results["MATH Lvl 5"], 2),
"dataset_config": None, # don't know
"dataset_split": None, # don't know
"dataset_revision": None,
"dataset_args": {"num_few_shot": 4},
"metric_name": "exact match",
},
"GPQA": {
"dataset_type": "Idavidrein/gpqa",
"dataset_name": "GPQA (0-shot)",
"metric_type": "acc_norm",
"metric_value": round(results["GPQA"], 2),
"dataset_config": None, # don't know
"dataset_split": None, # don't know
"dataset_revision": None,
"dataset_args": {"num_few_shot": 0},
"metric_name": "acc_norm",
},
"MuSR": {
"dataset_type": "TAUR-Lab/MuSR",
"dataset_name": "MuSR (0-shot)",
"metric_type": "acc_norm",
"metric_value": round(results["MUSR"], 2),
"dataset_config": None, # don't know
"dataset_split": None, # don't know
"dataset_args": {"num_few_shot": 0},
"metric_name": "acc_norm",
},
"MMLU-PRO": {
"dataset_type": "TIGER-Lab/MMLU-Pro",
"dataset_name": "MMLU-PRO (5-shot)",
"metric_type": "acc",
"metric_value": round(results["MMLU-PRO"], 2),
"dataset_config": "main",
"dataset_split": "test",
"dataset_args": {"num_few_shot": 5},
"metric_name": "accuracy",
},
}
def get_eval_results(df, repo):
results = search(df, repo)
task_summary = get_task_summary(results)
md_writer = MarkdownTableWriter()
md_writer.headers = ["Metric", "% Value"]
md_writer.value_matrix = [["Avg.", round(results["Average ⬆️"], 2)]] + [
[v["dataset_name"], v["metric_value"]] for v in task_summary.values()
]
text = f"""
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here]({get_details_url(repo)})!
Summarized results can be found [here]({get_contents_url(repo)})!
{md_writer.dumps()}
"""
return text
def get_edited_yaml_readme(df, repo, token: str | None):
card = ModelCard.load(repo, token=token)
results = search(df, repo)
common = {
"task_type": "text-generation",
"task_name": "Text Generation",
"source_name": "Open LLM Leaderboard",
"source_url": f"https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query={repo}",
}
tasks_results = get_task_summary(results)
if not card.data[
"eval_results"
]: # No results reported yet, we initialize the metadata
card.data["model-index"] = eval_results_to_model_index(
repo.split("/")[1],
[EvalResult(**task, **common) for task in tasks_results.values()],
)
else: # We add the new evaluations
for task in tasks_results.values():
cur_result = EvalResult(**task, **common)
if any(
result.is_equal_except_value(cur_result)
for result in card.data["eval_results"]
):
continue
card.data["eval_results"].append(cur_result)
return str(card)
def commit(
repo,
pr_number=None,
message="Adding Evaluation Results",
oauth_token: gr.OAuthToken | None = None,
): # specify pr number if you want to edit it, don't if you don't want
data = load_dataset("open-llm-leaderboard/contents", split="train")
df = pd.DataFrame(data)
desc = """
This is an automated PR created with https://huggingface.co/spaces/T145/open-llm-leaderboard-results-to-modelcard
The purpose of this PR is to add evaluation results from the Open LLM Leaderboard to your model card.
Please report any issues here: https://huggingface.co/spaces/T145/open-llm-leaderboard-results-to-modelcard/discussions
"""
if not oauth_token:
raise gr.Warning(
"You are not logged in. Click on 'Sign in with Huggingface' to log in."
)
else:
token = oauth_token
if repo.startswith("https://huggingface.co/"):
try:
repo = RepoUrl(repo).repo_id
except Exception:
raise gr.Error(f"Not a valid repo id: {str(repo)}")
edited = {"revision": f"refs/pr/{pr_number}"} if pr_number else {"create_pr": True}
try:
try: # check if there is a readme already
readme_text = get_edited_yaml_readme(
df, repo, token=token
) + get_eval_results(df, repo)
except Exception as e:
if "Repo card metadata block was not found." in str(e): # There is no readme
readme_text = get_edited_yaml_readme(df, repo, token=token)
else:
print(f"Something went wrong: {e}")
liste = [
CommitOperationAdd(
path_in_repo="README.md", path_or_fileobj=readme_text.encode()
)
]
commit = create_commit(
repo_id=repo,
token=token,
operations=liste,
commit_message=message,
commit_description=desc,
repo_type="model",
**edited,
).pr_url
return commit
except Exception as e:
if "Discussions are disabled for this repo" in str(e):
return "Discussions disabled"
elif "Cannot access gated repo" in str(e):
return "Gated repo"
elif "Repository Not Found" in str(e):
return "Repository Not Found"
else:
return e