import gradio as gr import numpy as np import tensorflow as tf import cv2 from tensorflow.keras.models import load_model from tensorflow.keras.applications.xception import preprocess_input as xcp_pre from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre from mtcnn import MTCNN import os import warnings warnings.filterwarnings("ignore") # Force TF to suppress log-level warnings os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Load models from local (downloaded from HF first in app setup) xcp_model = load_model("xception_model.h5") eff_model = load_model("efficientnet_model.h5") # Grad-CAM for Xception def grad_cam(model, img_array, size, preprocess_fn): img = cv2.resize(img_array, size) input_tensor = preprocess_fn(np.expand_dims(img, axis=0).astype(np.float32)) input_tensor = tf.convert_to_tensor(input_tensor) with tf.GradientTape() as tape: conv_layer = model.get_layer(index=-5).output grad_model = tf.keras.models.Model([model.inputs], [conv_layer, model.output]) conv_outputs, predictions = grad_model(input_tensor) loss = predictions[:, 0] grads = tape.gradient(loss, conv_outputs) pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2)) cam = tf.reduce_sum(tf.multiply(pooled_grads, conv_outputs), axis=-1).numpy()[0] cam = np.maximum(cam, 0) cam = cam / (cam.max() + 1e-8) cam = (cam * 255).astype(np.uint8) cam = cam.numpy() if hasattr(cam, 'numpy') else cam cam = cv2.resize(cam, size) heatmap = cv2.applyColorMap(cam, cv2.COLORMAP_JET) superimposed_img = cv2.addWeighted(cv2.cvtColor(img, cv2.COLOR_RGB2BGR), 0.6, heatmap, 0.4, 0) return superimposed_img # Face detector detector = MTCNN() def detect_face(image): faces = detector.detect_faces(image) if not faces: raise ValueError("No face detected.") x, y, w, h = faces[0]['box'] return image[y:y+h, x:x+w] def predict(image): try: face = detect_face(image) xcp_img = cv2.resize(face, (299, 299)) eff_img = cv2.resize(face, (224, 224)) xcp_input = np.expand_dims(xcp_pre(xcp_img.astype(np.float32)), axis=0) eff_input = np.expand_dims(eff_pre(eff_img.astype(np.float32)), axis=0) xcp_pred = xcp_model.predict(xcp_input)[0][0] eff_pred = eff_model.predict(eff_input)[0][0] ensemble_pred = (xcp_pred + eff_pred) / 2 label = "Fake" if ensemble_pred > 0.5 else "Real" cam_img = grad_cam(xcp_model, face, (299, 299), xcp_pre) return label, cam_img except Exception as e: return "خطأ", "خطأ" gr.Interface( fn=predict, inputs=gr.Image(type="numpy", label="Upload Face Image"), outputs=[gr.Label(label="Prediction"), gr.Image(label="Grad-CAM Explanation")], title="Deepfake Image Detector (with Grad-CAM)", description="Upload an image. We detect the face, classify using an ensemble (Xception + EfficientNetB4), and explain the prediction using Grad-CAM on Xception." ).launch()