import os import cv2 import numpy as np import gradio as gr import tensorflow as tf from tensorflow.keras.models import load_model from tensorflow.keras.applications.xception import preprocess_input as xcp_pre from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre from huggingface_hub import hf_hub_download # Download and load models xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5") eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="efficientnet_model.h5") xcp_model = load_model(xcp_path) eff_model = load_model(eff_path) def predict(image_path): # Read the image from file path image = cv2.imread(image_path) # Check if loading failed if image is None: raise ValueError("Failed to load image. Make sure the input is an image file.") # Convert BGR to RGB (OpenCV loads images in BGR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Resize for each model xcp_img = cv2.resize(image, (299, 299)) eff_img = cv2.resize(image, (224, 224)) # Preprocess xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...] eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...] # Predict xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0] eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0] avg_pred = (xcp_pred + eff_pred) / 2 label = "Real" if avg_pred > 0.5 else "Fake" return {"result": { "label": label, "average": round(avg_pred, 3), "xception": round(xcp_pred, 3), "efficientnet": round(eff_pred, 3) }} iface = gr.Interface( fn=predict, inputs=gr.Image(type="filepath"), outputs=gr.JSON(label="Prediction"), # ✅ Now it actually returns a dict live=False ) iface.launch()