import os import cv2 import numpy as np import gradio as gr import tensorflow as tf from tensorflow.keras.models import load_model from tensorflow.keras.applications.xception import preprocess_input as xcp_pre from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre from huggingface_hub import hf_hub_download from mtcnn import MTCNN # Download and load models xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5") eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="efficientnet_model.h5") xcp_model = load_model(xcp_path) eff_model = load_model(eff_path) # Face detector detector = MTCNN() def extract_face(image): faces = detector.detect_faces(image) if not faces: return None x, y, w, h = faces[0]['box'] x, y = max(0, x), max(0, y) face = image[y:y+h, x:x+w] return face def predict(image): face = extract_face(image) if face is None: return "No face detected", None # Prepare for Xception xcp_img = cv2.resize(face, (299, 299)) xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...] xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0] # Prepare for EfficientNet eff_img = cv2.resize(face, (224, 224)) eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...] eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0] # Ensemble average avg_pred = (xcp_pred + eff_pred) / 2 # ✅ Important fix: if label "real" = 1, fake = 0, prediction > 0.5 = real label = "Real" if avg_pred > 0.5 else "Fake" return label, face interface = gr.Interface( fn=predict, inputs=gr.Image(type="numpy", label="Upload Image"), outputs=[ gr.Label(label="Prediction"), gr.Image(type="numpy", label="Detected Face") ], title="Deepfake Image Detector (Ensemble: Xception + EfficientNetB4)", description="Upload an image. The model detects the face, classifies it as real or fake using an ensemble of Xception and EfficientNetB4." ) interface.launch()