import gradio as gr import numpy as np import cv2 import tensorflow as tf from tensorflow.keras.models import load_model, Model from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.applications.xception import preprocess_input as xcp_pre from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre from PIL import Image import matplotlib.pyplot as plt from huggingface_hub import hf_hub_download xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5") eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="efficientnet_model.h5") xcp_model = load_model(xcp_path) eff_model = load_model(eff_path) # Face detection def detect_face_opencv(pil_image): cv_img = np.array(pil_image.convert("RGB")) cv_img = cv_img[:, :, ::-1] # RGB to BGR face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') gray = cv2.cvtColor(cv_img, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=4) if len(faces) == 0: return pil_image # fallback (x, y, w, h) = max(faces, key=lambda b: b[2]*b[3]) # largest face return pil_image.crop((x, y, x+w, y+h)) # Grad-CAM def grad_cam(model, img, size, preprocess_func): img_resized = img.resize(size) x = img_to_array(img_resized) x = np.expand_dims(x, axis=0) x = preprocess_func(x) x_tensor = tf.convert_to_tensor(x) grad_model = Model([model.inputs], [model.layers[-3].output, model.output]) with tf.GradientTape() as tape: conv_outputs, predictions = grad_model(x_tensor) loss = predictions[:, 0] grads = tape.gradient(loss, conv_outputs)[0] cam = np.mean(grads, axis=-1) cam = np.maximum(cam, 0) cam /= cam.max() if cam.max() != 0 else 1 heatmap = cv2.resize(cam.numpy(), (size[0], size[1])) heatmap = np.uint8(255 * heatmap) heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) img_np = np.array(img_resized) if img_np.shape[-1] == 4: img_np = img_np[:, :, :3] superimposed = cv2.addWeighted(img_np, 0.6, heatmap, 0.4, 0) return Image.fromarray(cv2.cvtColor(superimposed, cv2.COLOR_BGR2RGB)) # Preprocessing def preprocess(img, size, preprocess_func): img = img.resize(size) arr = img_to_array(img) arr = np.expand_dims(arr, axis=0) return preprocess_func(arr) # Prediction logic def predict(image): face = detect_face_opencv(image) xcp_input = preprocess(face, (299, 299), xcp_pre) eff_input = preprocess(face, (224, 224), eff_pre) xcp_pred = xcp_model.predict(xcp_input)[0][0] eff_pred = eff_model.predict(eff_input)[0][0] ensemble_prob = (xcp_pred + eff_pred) / 2 label = "REAL" if ensemble_prob > 0.5 else "FAKE" cam_img = grad_cam(xcp_model, face, (299, 299), xcp_pre) return f"{label} ({ensemble_prob:.2%} confidence)", cam_img # Gradio interface gr.Interface( fn=predict, inputs=gr.Image(type="pil"), outputs=["text", "image"], title="Deepfake Image Detector (with Grad-CAM)", description="Upload an image. We detect the face, classify using an ensemble (Xception + EfficientNetB4), and explain the prediction with Grad-CAM." ).launch()