Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -15,25 +15,25 @@ xcp_model = load_model(xcp_path)
|
|
15 |
eff_model = load_model(eff_path)
|
16 |
|
17 |
def predict(image):
|
18 |
-
#
|
19 |
xcp_img = cv2.resize(image, (299, 299))
|
20 |
eff_img = cv2.resize(image, (224, 224))
|
21 |
-
|
22 |
xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
|
23 |
eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
|
24 |
-
|
|
|
25 |
xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
|
26 |
eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
|
27 |
-
|
28 |
avg_pred = (xcp_pred + eff_pred) / 2
|
29 |
label = "Real" if avg_pred > 0.5 else "Fake"
|
30 |
-
|
31 |
-
|
|
|
32 |
|
33 |
iface = gr.Interface(
|
34 |
fn=predict,
|
35 |
inputs=gr.Image(type="filepath"),
|
36 |
-
outputs=gr.JSON(), #
|
37 |
live=False
|
38 |
)
|
39 |
|
|
|
15 |
eff_model = load_model(eff_path)
|
16 |
|
17 |
def predict(image):
|
18 |
+
# Resize & preprocess
|
19 |
xcp_img = cv2.resize(image, (299, 299))
|
20 |
eff_img = cv2.resize(image, (224, 224))
|
|
|
21 |
xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
|
22 |
eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
|
23 |
+
|
24 |
+
# Predict
|
25 |
xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
|
26 |
eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
|
|
|
27 |
avg_pred = (xcp_pred + eff_pred) / 2
|
28 |
label = "Real" if avg_pred > 0.5 else "Fake"
|
29 |
+
|
30 |
+
# ✅ Return dict instead of string
|
31 |
+
return {"label": label, "probability": round(float(avg_pred), 4)}
|
32 |
|
33 |
iface = gr.Interface(
|
34 |
fn=predict,
|
35 |
inputs=gr.Image(type="filepath"),
|
36 |
+
outputs=gr.JSON(), # ✅ Now it actually returns a dict
|
37 |
live=False
|
38 |
)
|
39 |
|