Zeyadd-Mostaffa commited on
Commit
93ce865
·
verified ·
1 Parent(s): 3df4442

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -29
app.py CHANGED
@@ -7,7 +7,6 @@ from tensorflow.keras.models import load_model
7
  from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
8
  from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
9
  from huggingface_hub import hf_hub_download
10
- from mtcnn import MTCNN
11
 
12
  # Download and load models
13
  xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5")
@@ -15,52 +14,32 @@ eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", fi
15
  xcp_model = load_model(xcp_path)
16
  eff_model = load_model(eff_path)
17
 
18
- # Face detector
19
- detector = MTCNN()
20
-
21
- def extract_face(image):
22
- faces = detector.detect_faces(image)
23
- if not faces:
24
- return None
25
- x, y, w, h = faces[0]['box']
26
- x, y = max(0, x), max(0, y)
27
- return image[y:y+h, x:x+w]
28
-
29
  def predict(image):
30
- face = extract_face(image)
31
- if face is None:
32
- return "No face detected", None
33
 
34
- # Xception
35
- xcp_img = cv2.resize(face, (299, 299))
36
  xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
37
- xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
38
-
39
- # EfficientNet
40
- eff_img = cv2.resize(face, (224, 224))
41
  eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
 
 
42
  eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
43
 
44
- # Ensemble
45
  avg_pred = (xcp_pred + eff_pred) / 2
46
  label = "Real" if avg_pred > 0.5 else "Fake"
47
 
48
- # Log probabilities
49
- print(f"Xception: {xcp_pred:.4f}, EfficientNetB4: {eff_pred:.4f}, Ensemble Avg: {avg_pred:.4f}")
50
-
51
- # Return label with confidence
52
  result = f"{label} (Avg: {avg_pred:.3f}, XCP: {xcp_pred:.3f}, EFF: {eff_pred:.3f})"
53
- return result, face
54
 
55
  interface = gr.Interface(
56
  fn=predict,
57
  inputs=gr.Image(type="numpy", label="Upload Image"),
58
  outputs=[
59
  gr.Label(label="Prediction"),
60
- gr.Image(type="numpy", label="Detected Face")
61
  ],
62
  title="Deepfake Image Detector (Ensemble: Xception + EfficientNetB4)",
63
- description="Upload an image. The model detects the face, classifies it as real or fake using an ensemble of Xception and EfficientNetB4."
64
  )
65
 
66
  interface.launch()
 
7
  from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
8
  from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
9
  from huggingface_hub import hf_hub_download
 
10
 
11
  # Download and load models
12
  xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5")
 
14
  xcp_model = load_model(xcp_path)
15
  eff_model = load_model(eff_path)
16
 
 
 
 
 
 
 
 
 
 
 
 
17
  def predict(image):
18
+ # Use the full image directly (no face extraction)
19
+ xcp_img = cv2.resize(image, (299, 299))
20
+ eff_img = cv2.resize(image, (224, 224))
21
 
 
 
22
  xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
 
 
 
 
23
  eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
24
+
25
+ xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
26
  eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
27
 
 
28
  avg_pred = (xcp_pred + eff_pred) / 2
29
  label = "Real" if avg_pred > 0.5 else "Fake"
30
 
 
 
 
 
31
  result = f"{label} (Avg: {avg_pred:.3f}, XCP: {xcp_pred:.3f}, EFF: {eff_pred:.3f})"
32
+ return result, image
33
 
34
  interface = gr.Interface(
35
  fn=predict,
36
  inputs=gr.Image(type="numpy", label="Upload Image"),
37
  outputs=[
38
  gr.Label(label="Prediction"),
39
+ gr.Image(type="numpy", label="Input Image")
40
  ],
41
  title="Deepfake Image Detector (Ensemble: Xception + EfficientNetB4)",
42
+ description="Upload a full image. The model classifies it as real or fake using an ensemble of Xception and EfficientNetB4."
43
  )
44
 
45
  interface.launch()