Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,6 @@ from tensorflow.keras.models import load_model
|
|
7 |
from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
|
8 |
from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
-
from mtcnn import MTCNN
|
11 |
|
12 |
# Download and load models
|
13 |
xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5")
|
@@ -15,52 +14,32 @@ eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", fi
|
|
15 |
xcp_model = load_model(xcp_path)
|
16 |
eff_model = load_model(eff_path)
|
17 |
|
18 |
-
# Face detector
|
19 |
-
detector = MTCNN()
|
20 |
-
|
21 |
-
def extract_face(image):
|
22 |
-
faces = detector.detect_faces(image)
|
23 |
-
if not faces:
|
24 |
-
return None
|
25 |
-
x, y, w, h = faces[0]['box']
|
26 |
-
x, y = max(0, x), max(0, y)
|
27 |
-
return image[y:y+h, x:x+w]
|
28 |
-
|
29 |
def predict(image):
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
|
34 |
-
# Xception
|
35 |
-
xcp_img = cv2.resize(face, (299, 299))
|
36 |
xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
|
37 |
-
xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
|
38 |
-
|
39 |
-
# EfficientNet
|
40 |
-
eff_img = cv2.resize(face, (224, 224))
|
41 |
eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
|
|
|
|
|
42 |
eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
|
43 |
|
44 |
-
# Ensemble
|
45 |
avg_pred = (xcp_pred + eff_pred) / 2
|
46 |
label = "Real" if avg_pred > 0.5 else "Fake"
|
47 |
|
48 |
-
# Log probabilities
|
49 |
-
print(f"Xception: {xcp_pred:.4f}, EfficientNetB4: {eff_pred:.4f}, Ensemble Avg: {avg_pred:.4f}")
|
50 |
-
|
51 |
-
# Return label with confidence
|
52 |
result = f"{label} (Avg: {avg_pred:.3f}, XCP: {xcp_pred:.3f}, EFF: {eff_pred:.3f})"
|
53 |
-
return result,
|
54 |
|
55 |
interface = gr.Interface(
|
56 |
fn=predict,
|
57 |
inputs=gr.Image(type="numpy", label="Upload Image"),
|
58 |
outputs=[
|
59 |
gr.Label(label="Prediction"),
|
60 |
-
gr.Image(type="numpy", label="
|
61 |
],
|
62 |
title="Deepfake Image Detector (Ensemble: Xception + EfficientNetB4)",
|
63 |
-
description="Upload
|
64 |
)
|
65 |
|
66 |
interface.launch()
|
|
|
7 |
from tensorflow.keras.applications.xception import preprocess_input as xcp_pre
|
8 |
from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre
|
9 |
from huggingface_hub import hf_hub_download
|
|
|
10 |
|
11 |
# Download and load models
|
12 |
xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5")
|
|
|
14 |
xcp_model = load_model(xcp_path)
|
15 |
eff_model = load_model(eff_path)
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def predict(image):
|
18 |
+
# Use the full image directly (no face extraction)
|
19 |
+
xcp_img = cv2.resize(image, (299, 299))
|
20 |
+
eff_img = cv2.resize(image, (224, 224))
|
21 |
|
|
|
|
|
22 |
xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
|
|
|
|
|
|
|
|
|
23 |
eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
|
24 |
+
|
25 |
+
xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
|
26 |
eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
|
27 |
|
|
|
28 |
avg_pred = (xcp_pred + eff_pred) / 2
|
29 |
label = "Real" if avg_pred > 0.5 else "Fake"
|
30 |
|
|
|
|
|
|
|
|
|
31 |
result = f"{label} (Avg: {avg_pred:.3f}, XCP: {xcp_pred:.3f}, EFF: {eff_pred:.3f})"
|
32 |
+
return result, image
|
33 |
|
34 |
interface = gr.Interface(
|
35 |
fn=predict,
|
36 |
inputs=gr.Image(type="numpy", label="Upload Image"),
|
37 |
outputs=[
|
38 |
gr.Label(label="Prediction"),
|
39 |
+
gr.Image(type="numpy", label="Input Image")
|
40 |
],
|
41 |
title="Deepfake Image Detector (Ensemble: Xception + EfficientNetB4)",
|
42 |
+
description="Upload a full image. The model classifies it as real or fake using an ensemble of Xception and EfficientNetB4."
|
43 |
)
|
44 |
|
45 |
interface.launch()
|