Zeyadd-Mostaffa commited on
Commit
4ab3d47
·
verified ·
1 Parent(s): e9c5472

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -18
app.py CHANGED
@@ -9,10 +9,9 @@ from tensorflow.keras.applications.efficientnet import preprocess_input as eff_p
9
  from huggingface_hub import hf_hub_download
10
  from mtcnn import MTCNN
11
 
12
- # Load models
13
  xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5")
14
  eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="efficientnet_model.h5")
15
-
16
  xcp_model = load_model(xcp_path)
17
  eff_model = load_model(eff_path)
18
 
@@ -23,37 +22,43 @@ def extract_face(image):
23
  faces = detector.detect_faces(image)
24
  if not faces:
25
  return None
26
- x, y, w, h = faces[0]["box"]
27
  x, y = max(0, x), max(0, y)
28
- return image[y:y+h, x:x+w]
 
29
 
30
  def predict(image):
31
  face = extract_face(image)
32
  if face is None:
33
- return "No face detected"
34
 
35
- # Xception
36
  xcp_img = cv2.resize(face, (299, 299))
37
  xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
38
- xcp_pred = xcp_model.predict(xcp_tensor, verbose=0)[0][0]
39
 
40
- # EfficientNet
41
  eff_img = cv2.resize(face, (224, 224))
42
  eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
43
- eff_pred = eff_model.predict(eff_tensor, verbose=0)[0][0]
 
 
 
 
 
 
44
 
45
- # Ensemble
46
- avg_pred = (xcp_pred + eff_pred) / 2.0
47
- label = "Fake" if avg_pred > 0.5 else "Real"
48
- return label
49
 
50
- # Gradio interface
51
  interface = gr.Interface(
52
  fn=predict,
53
- inputs=gr.Image(type="numpy", label="Upload an image"),
54
- outputs=gr.Label(label="Prediction"),
55
- title="Deepfake Image Detector",
56
- description="Upload an image. We detect the face and classify it using an ensemble of Xception + EfficientNetB4."
 
 
 
57
  )
58
 
59
  interface.launch()
 
9
  from huggingface_hub import hf_hub_download
10
  from mtcnn import MTCNN
11
 
12
+ # Download and load models
13
  xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5")
14
  eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="efficientnet_model.h5")
 
15
  xcp_model = load_model(xcp_path)
16
  eff_model = load_model(eff_path)
17
 
 
22
  faces = detector.detect_faces(image)
23
  if not faces:
24
  return None
25
+ x, y, w, h = faces[0]['box']
26
  x, y = max(0, x), max(0, y)
27
+ face = image[y:y+h, x:x+w]
28
+ return face
29
 
30
  def predict(image):
31
  face = extract_face(image)
32
  if face is None:
33
+ return "No face detected", None
34
 
35
+ # Prepare for Xception
36
  xcp_img = cv2.resize(face, (299, 299))
37
  xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
38
+ xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
39
 
40
+ # Prepare for EfficientNet
41
  eff_img = cv2.resize(face, (224, 224))
42
  eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
43
+ eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
44
+
45
+ # Ensemble average
46
+ avg_pred = (xcp_pred + eff_pred) / 2
47
+
48
+ # ✅ Important fix: if label "real" = 1, fake = 0, prediction > 0.5 = real
49
+ label = "Real" if avg_pred > 0.5 else "Fake"
50
 
51
+ return label, face
 
 
 
52
 
 
53
  interface = gr.Interface(
54
  fn=predict,
55
+ inputs=gr.Image(type="numpy", label="Upload Image"),
56
+ outputs=[
57
+ gr.Label(label="Prediction"),
58
+ gr.Image(type="numpy", label="Detected Face")
59
+ ],
60
+ title="Deepfake Image Detector (Ensemble: Xception + EfficientNetB4)",
61
+ description="Upload an image. The model detects the face, classifies it as real or fake using an ensemble of Xception and EfficientNetB4."
62
  )
63
 
64
  interface.launch()