Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,10 +9,9 @@ from tensorflow.keras.applications.efficientnet import preprocess_input as eff_p
|
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
from mtcnn import MTCNN
|
11 |
|
12 |
-
#
|
13 |
xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5")
|
14 |
eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="efficientnet_model.h5")
|
15 |
-
|
16 |
xcp_model = load_model(xcp_path)
|
17 |
eff_model = load_model(eff_path)
|
18 |
|
@@ -23,37 +22,43 @@ def extract_face(image):
|
|
23 |
faces = detector.detect_faces(image)
|
24 |
if not faces:
|
25 |
return None
|
26 |
-
x, y, w, h = faces[0][
|
27 |
x, y = max(0, x), max(0, y)
|
28 |
-
|
|
|
29 |
|
30 |
def predict(image):
|
31 |
face = extract_face(image)
|
32 |
if face is None:
|
33 |
-
return "No face detected"
|
34 |
|
35 |
-
# Xception
|
36 |
xcp_img = cv2.resize(face, (299, 299))
|
37 |
xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
|
38 |
-
xcp_pred = xcp_model.predict(xcp_tensor, verbose=0)[0]
|
39 |
|
40 |
-
# EfficientNet
|
41 |
eff_img = cv2.resize(face, (224, 224))
|
42 |
eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
|
43 |
-
eff_pred = eff_model.predict(eff_tensor, verbose=0)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
avg_pred = (xcp_pred + eff_pred) / 2.0
|
47 |
-
label = "Fake" if avg_pred > 0.5 else "Real"
|
48 |
-
return label
|
49 |
|
50 |
-
# Gradio interface
|
51 |
interface = gr.Interface(
|
52 |
fn=predict,
|
53 |
-
inputs=gr.Image(type="numpy", label="Upload
|
54 |
-
outputs=
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
57 |
)
|
58 |
|
59 |
interface.launch()
|
|
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
from mtcnn import MTCNN
|
11 |
|
12 |
+
# Download and load models
|
13 |
xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5")
|
14 |
eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="efficientnet_model.h5")
|
|
|
15 |
xcp_model = load_model(xcp_path)
|
16 |
eff_model = load_model(eff_path)
|
17 |
|
|
|
22 |
faces = detector.detect_faces(image)
|
23 |
if not faces:
|
24 |
return None
|
25 |
+
x, y, w, h = faces[0]['box']
|
26 |
x, y = max(0, x), max(0, y)
|
27 |
+
face = image[y:y+h, x:x+w]
|
28 |
+
return face
|
29 |
|
30 |
def predict(image):
|
31 |
face = extract_face(image)
|
32 |
if face is None:
|
33 |
+
return "No face detected", None
|
34 |
|
35 |
+
# Prepare for Xception
|
36 |
xcp_img = cv2.resize(face, (299, 299))
|
37 |
xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...]
|
38 |
+
xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0]
|
39 |
|
40 |
+
# Prepare for EfficientNet
|
41 |
eff_img = cv2.resize(face, (224, 224))
|
42 |
eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...]
|
43 |
+
eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0]
|
44 |
+
|
45 |
+
# Ensemble average
|
46 |
+
avg_pred = (xcp_pred + eff_pred) / 2
|
47 |
+
|
48 |
+
# ✅ Important fix: if label "real" = 1, fake = 0, prediction > 0.5 = real
|
49 |
+
label = "Real" if avg_pred > 0.5 else "Fake"
|
50 |
|
51 |
+
return label, face
|
|
|
|
|
|
|
52 |
|
|
|
53 |
interface = gr.Interface(
|
54 |
fn=predict,
|
55 |
+
inputs=gr.Image(type="numpy", label="Upload Image"),
|
56 |
+
outputs=[
|
57 |
+
gr.Label(label="Prediction"),
|
58 |
+
gr.Image(type="numpy", label="Detected Face")
|
59 |
+
],
|
60 |
+
title="Deepfake Image Detector (Ensemble: Xception + EfficientNetB4)",
|
61 |
+
description="Upload an image. The model detects the face, classifies it as real or fake using an ensemble of Xception and EfficientNetB4."
|
62 |
)
|
63 |
|
64 |
interface.launch()
|