Spaces:
Sleeping
Sleeping
import os | |
import cv2 | |
import numpy as np | |
import gradio as gr | |
import tensorflow as tf | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.applications.xception import preprocess_input as xcp_pre | |
from tensorflow.keras.applications.efficientnet import preprocess_input as eff_pre | |
from huggingface_hub import hf_hub_download | |
# Download and load models | |
xcp_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="xception_model.h5") | |
eff_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/deepfake-image-detector", filename="efficientnet_model.h5") | |
xcp_model = load_model(xcp_path) | |
eff_model = load_model(eff_path) | |
def predict(image_path): | |
# Read the image from file path | |
image = cv2.imread(image_path) | |
# Check if loading failed | |
if image is None: | |
raise ValueError("Failed to load image. Make sure the input is an image file.") | |
# Convert BGR to RGB (OpenCV loads images in BGR) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
# Resize for each model | |
xcp_img = cv2.resize(image, (299, 299)) | |
eff_img = cv2.resize(image, (224, 224)) | |
# Preprocess | |
xcp_tensor = xcp_pre(xcp_img.astype(np.float32))[np.newaxis, ...] | |
eff_tensor = eff_pre(eff_img.astype(np.float32))[np.newaxis, ...] | |
# Predict | |
xcp_pred = xcp_model.predict(xcp_tensor, verbose=0).flatten()[0] | |
eff_pred = eff_model.predict(eff_tensor, verbose=0).flatten()[0] | |
avg_pred = (xcp_pred + eff_pred) / 2 | |
label = "Real" if avg_pred > 0.5 else "Fake" | |
return { | |
"label": label, | |
"average": round(avg_pred, 3), | |
"xception": round(xcp_pred, 3), | |
"efficientnet": round(eff_pred, 3) | |
} | |
iface = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="filepath"), | |
outputs=gr.JSON(), # β Now it actually returns a dict | |
live=False | |
) | |
iface.launch() |