Martin Jurkovic commited on
Commit
385e405
·
1 Parent(s): 5f7fcf4

Allow missing metric

Browse files
Files changed (1) hide show
  1. src/populate.py +9 -3
src/populate.py CHANGED
@@ -23,10 +23,12 @@ from src.about import Tasks, SingleTableTasks
23
  # df = df[has_no_nan_values(df, benchmark_cols)]
24
  # return df
25
 
 
26
  def strip_emoji(text: str) -> str:
27
  """Removes emojis from text"""
28
  return text.encode("ascii", "ignore").decode("ascii").rstrip()
29
 
 
30
  def get_leaderboard_df(results_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
31
  """Creates a dataframe from all the individual experiment results"""
32
 
@@ -64,8 +66,10 @@ def get_leaderboard_df(results_path: str, cols: list, benchmark_cols: list) -> p
64
  metric_values.append(data["multi_table_metrics"][stripped_metric][table]["statistic"])
65
 
66
  row[metric] = np.mean(metric_values).round(decimals=2)
 
 
67
  multitable_df = pd.concat([multitable_df, pd.DataFrame([row])], ignore_index=True)
68
-
69
  singletable_row = {"Dataset": dataset, "Model": model}
70
  for metric in single_table_metrics:
71
  stripped_metric = strip_emoji(metric)
@@ -76,10 +80,12 @@ def get_leaderboard_df(results_path: str, cols: list, benchmark_cols: list) -> p
76
  metric_values.append(data["single_table_metrics"][stripped_metric][table]["accuracy"])
77
  if "value" in data["single_table_metrics"][stripped_metric][table]:
78
  metric_values.append(data["single_table_metrics"][stripped_metric][table]["value"])
79
-
80
  singletable_row[metric] = np.mean(metric_values).round(decimals=2)
 
 
81
  singletable_df = pd.concat([singletable_df, pd.DataFrame([singletable_row])], ignore_index=True)
82
-
83
  return singletable_df, multitable_df
84
 
85
 
 
23
  # df = df[has_no_nan_values(df, benchmark_cols)]
24
  # return df
25
 
26
+
27
  def strip_emoji(text: str) -> str:
28
  """Removes emojis from text"""
29
  return text.encode("ascii", "ignore").decode("ascii").rstrip()
30
 
31
+
32
  def get_leaderboard_df(results_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
33
  """Creates a dataframe from all the individual experiment results"""
34
 
 
66
  metric_values.append(data["multi_table_metrics"][stripped_metric][table]["statistic"])
67
 
68
  row[metric] = np.mean(metric_values).round(decimals=2)
69
+ else:
70
+ row[metric] = np.nan
71
  multitable_df = pd.concat([multitable_df, pd.DataFrame([row])], ignore_index=True)
72
+
73
  singletable_row = {"Dataset": dataset, "Model": model}
74
  for metric in single_table_metrics:
75
  stripped_metric = strip_emoji(metric)
 
80
  metric_values.append(data["single_table_metrics"][stripped_metric][table]["accuracy"])
81
  if "value" in data["single_table_metrics"][stripped_metric][table]:
82
  metric_values.append(data["single_table_metrics"][stripped_metric][table]["value"])
83
+
84
  singletable_row[metric] = np.mean(metric_values).round(decimals=2)
85
+ else:
86
+ singletable_row[metric] = np.nan
87
  singletable_df = pd.concat([singletable_df, pd.DataFrame([singletable_row])], ignore_index=True)
88
+
89
  return singletable_df, multitable_df
90
 
91