Spaces:
Runtime error
Runtime error
Martin Jurkovic
commited on
Commit
·
0a65444
1
Parent(s):
9446fe5
Update method names
Browse files- src/populate.py +14 -38
src/populate.py
CHANGED
@@ -9,6 +9,17 @@ from src.display.utils import EvalQueueColumn
|
|
9 |
from src.about import Tasks, SingleTableTasks, SingleColumnTasks
|
10 |
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
# def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
13 |
# """Creates a dataframe from all the individual experiment results"""
|
14 |
# raw_data = get_raw_eval_results(results_path, requests_path)
|
@@ -62,6 +73,9 @@ def get_leaderboard_df(results_path: str, cols: list, benchmark_cols: list) -> p
|
|
62 |
# iterate through all json files and add the data to the dataframe
|
63 |
for data in all_data_json:
|
64 |
model = data["method_name"]
|
|
|
|
|
|
|
65 |
dataset = data["dataset_name"]
|
66 |
row = {"Dataset": dataset, "Model": model}
|
67 |
for metric in multi_table_metrics:
|
@@ -139,41 +153,3 @@ def get_leaderboard_df(results_path: str, cols: list, benchmark_cols: list) -> p
|
|
139 |
|
140 |
|
141 |
return singlecolumn_df, singletable_df, multitable_df
|
142 |
-
|
143 |
-
|
144 |
-
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
145 |
-
"""Creates the different dataframes for the evaluation queues requestes"""
|
146 |
-
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
147 |
-
all_evals = []
|
148 |
-
|
149 |
-
for entry in entries:
|
150 |
-
if ".json" in entry:
|
151 |
-
file_path = os.path.join(save_path, entry)
|
152 |
-
with open(file_path) as fp:
|
153 |
-
data = json.load(fp)
|
154 |
-
|
155 |
-
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
156 |
-
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
157 |
-
|
158 |
-
all_evals.append(data)
|
159 |
-
elif ".md" not in entry:
|
160 |
-
# this is a folder
|
161 |
-
sub_entries = [
|
162 |
-
e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")
|
163 |
-
]
|
164 |
-
for sub_entry in sub_entries:
|
165 |
-
file_path = os.path.join(save_path, entry, sub_entry)
|
166 |
-
with open(file_path) as fp:
|
167 |
-
data = json.load(fp)
|
168 |
-
|
169 |
-
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
170 |
-
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
171 |
-
all_evals.append(data)
|
172 |
-
|
173 |
-
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
174 |
-
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
175 |
-
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
|
176 |
-
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
177 |
-
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
178 |
-
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
179 |
-
return df_finished[cols], df_running[cols], df_pending[cols]
|
|
|
9 |
from src.about import Tasks, SingleTableTasks, SingleColumnTasks
|
10 |
|
11 |
|
12 |
+
# Model name mapping dictionary
|
13 |
+
model_names = {
|
14 |
+
'CLAVADDPM': "ClavaDDPM",
|
15 |
+
'RGCLD': "RGCLD",
|
16 |
+
'MOSTLYAI': "TabularARGN",
|
17 |
+
'RCTGAN': "RCTGAN",
|
18 |
+
'REALTABFORMER': "REaLTabFormer",
|
19 |
+
'SDV': "SDV",
|
20 |
+
}
|
21 |
+
|
22 |
+
|
23 |
# def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
24 |
# """Creates a dataframe from all the individual experiment results"""
|
25 |
# raw_data = get_raw_eval_results(results_path, requests_path)
|
|
|
73 |
# iterate through all json files and add the data to the dataframe
|
74 |
for data in all_data_json:
|
75 |
model = data["method_name"]
|
76 |
+
# Rename model if it exists in the mapping dictionary
|
77 |
+
if model.upper() in model_names:
|
78 |
+
model = model_names[model.upper()]
|
79 |
dataset = data["dataset_name"]
|
80 |
row = {"Dataset": dataset, "Model": model}
|
81 |
for metric in multi_table_metrics:
|
|
|
153 |
|
154 |
|
155 |
return singlecolumn_df, singletable_df, multitable_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|