leaderboard / src /about.py
Martin Jurkovic
Remove intro text
49eec5b
raw
history blame
4.33 kB
from dataclasses import dataclass
from enum import Enum
@dataclass
class Task:
benchmark: str
metric: str
col_name: str
# Select your tasks here
# ---------------------------------------------------
class Tasks(Enum):
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
# task0 = Task("anli_r1", "acc", "ANLI")
# task1 = Task("logiqa", "acc_norm", "LogiQA")
# task_0 = Task("multi-table", "AggregationDetection-LogisticRegression", "AggregationDetection-LogisticRegression ⬇️")
task_1 = Task("multi-table", "AggregationDetection-XGBClassifier", "C2ST Agg-XGBClassifier ⬇️")
task_2 = Task("multi-table", "CardinalityShapeSimilarity", "CardinalityShapeSimilarity ⬆️")
class SingleTableTasks(Enum):
task_0 = Task("single-table", "MaximumMeanDiscrepancy", "MaximumMeanDiscrepancy ⬇️")
# PairwiseCorrelationDifference
task_1 = Task("single-table", "PairwiseCorrelationDifference", "PairwiseCorrelationDifference ⬇️")
# SingleTableDetection-LogisticRegression
# task_2 = Task("single-table", "SingleTableDetection-LogisticRegression", "SingleTableDetection-LogisticRegression ⬇️")
# SingleTableDetection-XGBClassifier
task_3 = Task("single-table", "SingleTableDetection-XGBClassifier", "SingleTableDetection-XGBClassifier ⬇️")
class SingleColumnTasks(Enum):
# ChiSquareTest
task_0 = Task("single-column", "ChiSquareTest", "ChiSquareTest ⬇️")
# HellingerDistance
task_1 = Task("single-column", "HellingerDistance", "HellingerDistance ⬇️")
# JensenShannonDistance
task_2 = Task("single-column", "JensenShannonDistance", "JensenShannonDistance ⬇️")
# KolmogorovSmirnovTest
task_3 = Task("single-column", "KolmogorovSmirnovTest", "KolmogorovSmirnovTest ⬇️")
# SingleColumnDetection-LogisticRegression
# task_4 = Task("single-column", "SingleColumnDetection-LogisticRegression", "SingleColumnDetection-LogisticRegression ⬇️")
# SingleColumnDetection-XGBClassifier
task_5 = Task("single-column", "SingleColumnDetection-XGBClassifier", "SingleColumnDetection-XGBClassifier ⬇️")
# TotalVariationDistance
task_6 = Task("single-column", "TotalVariationDistance", "TotalVariationDistance ⬇️")
# WassersteinDistance
task_7 = Task("single-column", "WassersteinDistance", "WassersteinDistance ⬇️")
NUM_FEWSHOT = 0 # Change with your few shot
# ---------------------------------------------------
# Your leaderboard name
TITLE = """<h1 align="center" id="space-title">Syntherela Leaderboard</h1>"""
# What does your leaderboard evaluate?
INTRODUCTION_TEXT = """
"""
# Which evaluations are you running? how can people reproduce what you have?
LLM_BENCHMARKS_TEXT = f"""
# About
The **SyntheRela Leaderboard** provides a public evaluation of relational database synthesis methods using the **SyntheRela benchmark** ([github](https://github.com/martinjurkovic/syntherela)). This benchmark incorporates best practices, a novel robust detection metric, and a relational deep learning utility approach that leverages graph neural networks. It enables a comprehensive comparison of methods across multiple real-world databases.
To add a model to the leaderboard, run the **SyntheRela benchmark** on your generated data and then open a pull request on the [SyntheRela repository](https://github.com/martinjurkovic/syntherela).
## Authors
- **Martin Jurkovič**
- **Valter Hudovernik**
- **Erik Štrumbelj**
If you use the results from this leaderboard in your research, please **cite our paper** (citation below).
"""
EVALUATION_QUEUE_TEXT = """
To add a model to the leaderboard, run the **SyntheRela benchmark** on your generated data and then open a pull request on the [SyntheRela repository](https://github.com/martinjurkovic/syntherela).
"""
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@inproceedings{
iclrsyntheticdata2025syntherela,
title={SyntheRela: A Benchmark For Synthetic Relational Database Generation},
author={Martin Jurkovic and Valter Hudovernik and Erik {\v{S}}trumbelj},
booktitle={Will Synthetic Data Finally Solve the Data Access Problem?},
year={2025},
url={https://openreview.net/forum?id=ZfQofWYn6n}
}"""