Spaces:
Runtime error
Runtime error
File size: 5,581 Bytes
9346f1c 4103566 9346f1c 4596a70 8b1f7a0 01ea22b b98f07f 54eae7e 3b3db42 5f7fcf4 370d5a0 3b3db42 9446fe5 b98f07f 2a73469 10f9b3c 30dede7 fabb601 4103566 fabb601 08ba1fc fabb601 9446fe5 1b8a36b a885f09 370d5a0 2a73469 5f7fcf4 4103566 9446fe5 4103566 5f7fcf4 4103566 beaaa9e 5f7fcf4 9446fe5 5f7fcf4 370d5a0 9446fe5 370d5a0 f6475aa 01233b7 58733e4 d4ccaf3 10f9b3c 8daa060 5f7fcf4 370d5a0 d4ccaf3 e7226cc f7d1b51 5acb894 f7d1b51 818f024 f7d1b51 10f9b3c 511c060 10f9b3c c438de2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
AutoEvalColumn,
singletable_AutoEvalColumn,
singlecolumn_AutoEvalColumn,
ModelType,
fields,
)
from src.envs import API, EVAL_RESULTS_PATH, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_leaderboard_df
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception as e:
print(f"Error downloading results: {e}")
# Create the directory if it doesn't exist
import os
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
SINGLECOLUMN_LEADERBOARD_DF, SINGLETABLE_LEADERBOARD_DF, MULTITABLE_LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS)
def init_multitable_leaderboard(dataframe):
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.dataset.name, type="checkboxgroup", label="Datasets"),
ColumnFilter(AutoEvalColumn.model.name, type="checkboxgroup", label="Models"),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
def init_singletable_leaderboard(dataframe):
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(singletable_AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(singletable_AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(singletable_AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[singletable_AutoEvalColumn.model.name],
hide_columns=[c.name for c in fields(singletable_AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(singletable_AutoEvalColumn.dataset.name, type="checkboxgroup", label="Datasets"),
ColumnFilter(singletable_AutoEvalColumn.model.name, type="checkboxgroup", label="Models"),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
def init_singlecolumn_leaderboard(dataframe):
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(singlecolumn_AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(singlecolumn_AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(singlecolumn_AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[singlecolumn_AutoEvalColumn.model.name],
hide_columns=[c.name for c in fields(singlecolumn_AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(singlecolumn_AutoEvalColumn.dataset.name, type="checkboxgroup", label="Datasets"),
ColumnFilter(singlecolumn_AutoEvalColumn.table.name, type="checkboxgroup", label="Tables"),
ColumnFilter(singlecolumn_AutoEvalColumn.model.name, type="checkboxgroup", label="Models"),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
MultiTable", elem_id="syntherela-benchmark-tab-table", id=0):
leaderboard = init_multitable_leaderboard(MULTITABLE_LEADERBOARD_DF)
with gr.TabItem("π
SingleTable", elem_id="syntherela-benchmark-tab-table", id=1):
singletable_leaderboard = init_singletable_leaderboard(SINGLETABLE_LEADERBOARD_DF)
with gr.TabItem("π
SingleColumn", elem_id="syntherela-benchmark-tab-table", id=2):
singlecolumn_leaderboard = init_singlecolumn_leaderboard(SINGLECOLUMN_LEADERBOARD_DF)
with gr.TabItem("π About", elem_id="syntherela-benchmark-tab-table", id=3):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=8,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch() |