Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,6 @@ import matplotlib.pyplot as plt
|
|
4 |
import pandas as pd
|
5 |
from langgraph.graph import StateGraph
|
6 |
from langchain_core.messages import HumanMessage, AIMessage
|
7 |
-
from langchain_anthropic import ChatAnthropic
|
8 |
import warnings
|
9 |
warnings.filterwarnings("ignore")
|
10 |
|
@@ -20,11 +19,51 @@ api_key = os.getenv("ANTHROPIC_API_KEY")
|
|
20 |
if not api_key:
|
21 |
raise ValueError("ANTHROPIC_API_KEY environment variable not set")
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# System prompt constructor
|
30 |
def make_system_prompt(suffix: str) -> str:
|
|
|
4 |
import pandas as pd
|
5 |
from langgraph.graph import StateGraph
|
6 |
from langchain_core.messages import HumanMessage, AIMessage
|
|
|
7 |
import warnings
|
8 |
warnings.filterwarnings("ignore")
|
9 |
|
|
|
19 |
if not api_key:
|
20 |
raise ValueError("ANTHROPIC_API_KEY environment variable not set")
|
21 |
|
22 |
+
# Create a custom LLM implementation to avoid the proxies issue
|
23 |
+
def create_llm():
|
24 |
+
# Directly use the Anthropic client instead of LangChain's wrapper
|
25 |
+
from anthropic import Anthropic
|
26 |
+
|
27 |
+
# Create the base client without any proxies
|
28 |
+
client = Anthropic(api_key=api_key)
|
29 |
+
|
30 |
+
# Create a simple wrapper function that mimics the LangChain interface
|
31 |
+
class CustomAnthropicLLM:
|
32 |
+
def __init__(self, client, model):
|
33 |
+
self.client = client
|
34 |
+
self.model = model
|
35 |
+
|
36 |
+
def invoke(self, inputs):
|
37 |
+
if isinstance(inputs, dict) and "messages" in inputs:
|
38 |
+
messages = inputs["messages"]
|
39 |
+
formatted_messages = []
|
40 |
+
|
41 |
+
for msg in messages:
|
42 |
+
role = "user" if isinstance(msg, HumanMessage) else "assistant"
|
43 |
+
formatted_messages.append({"role": role, "content": msg.content})
|
44 |
+
|
45 |
+
response = self.client.messages.create(
|
46 |
+
model=self.model,
|
47 |
+
messages=formatted_messages,
|
48 |
+
max_tokens=1024
|
49 |
+
)
|
50 |
+
return response.content[0].text
|
51 |
+
|
52 |
+
elif isinstance(inputs, str):
|
53 |
+
response = self.client.messages.create(
|
54 |
+
model=self.model,
|
55 |
+
messages=[{"role": "user", "content": inputs}],
|
56 |
+
max_tokens=1024
|
57 |
+
)
|
58 |
+
return response.content[0].text
|
59 |
+
|
60 |
+
else:
|
61 |
+
raise ValueError(f"Unsupported input format: {type(inputs)}")
|
62 |
+
|
63 |
+
return CustomAnthropicLLM(client, "claude-3-5-sonnet-20240229")
|
64 |
+
|
65 |
+
# Create our custom LLM
|
66 |
+
llm = create_llm()
|
67 |
|
68 |
# System prompt constructor
|
69 |
def make_system_prompt(suffix: str) -> str:
|