Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,67 +3,102 @@ import os
|
|
3 |
import matplotlib.pyplot as plt
|
4 |
import pandas as pd
|
5 |
from langgraph.graph import StateGraph
|
6 |
-
from
|
7 |
-
from langchain_core.messages import HumanMessage
|
8 |
from langchain_anthropic import ChatAnthropic
|
|
|
|
|
9 |
|
10 |
-
#
|
11 |
class Command:
|
12 |
def __init__(self, update=None, next=None, goto=None):
|
13 |
self.update = update or {}
|
14 |
self.next = next
|
15 |
self.goto = goto
|
16 |
|
17 |
-
# Set
|
18 |
-
|
|
|
|
|
19 |
|
20 |
-
# Claude 3.5 Sonnet model
|
21 |
-
|
22 |
-
|
23 |
-
#
|
24 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
#
|
27 |
def make_system_prompt(suffix: str) -> str:
|
28 |
return (
|
29 |
-
"You are a helpful AI assistant collaborating with
|
30 |
-
"
|
31 |
-
"
|
|
|
|
|
|
|
|
|
32 |
)
|
33 |
|
34 |
-
# Research
|
35 |
def research_node(state):
|
|
|
|
|
36 |
agent = create_agent_executor(
|
37 |
llm,
|
38 |
tools=[],
|
39 |
-
system_message=make_system_prompt("You can only
|
40 |
)
|
|
|
|
|
41 |
result = agent.invoke(state)
|
42 |
-
|
|
|
|
|
|
|
|
|
43 |
# Determine next step
|
44 |
-
goto = "chart_generator" if "FINAL ANSWER" not in
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
49 |
return Command(update={"messages": result["messages"]}, goto=goto)
|
50 |
|
51 |
-
# Chart generation
|
52 |
def chart_node(state):
|
|
|
|
|
53 |
agent = create_agent_executor(
|
54 |
llm,
|
55 |
tools=[],
|
56 |
system_message=make_system_prompt("You can only generate charts.")
|
57 |
)
|
|
|
|
|
58 |
result = agent.invoke(state)
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
return Command(update={"messages": result["messages"]}, goto="__end__")
|
64 |
|
65 |
-
# LangGraph
|
66 |
-
workflow = StateGraph(dict)
|
67 |
workflow.add_node("researcher", research_node)
|
68 |
workflow.add_node("chart_generator", chart_node)
|
69 |
workflow.set_entry_point("researcher")
|
@@ -72,17 +107,25 @@ workflow.add_edge("researcher", "chart_generator")
|
|
72 |
graph = workflow.compile()
|
73 |
|
74 |
# LangGraph runner
|
75 |
-
def run_langgraph(
|
76 |
try:
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
years = [2020, 2021, 2022, 2023, 2024]
|
83 |
gdp = [21.4, 22.0, 23.1, 24.8, 26.2]
|
84 |
plt.figure()
|
85 |
-
plt.plot(years, gdp, marker=
|
86 |
plt.title("USA GDP Over Last 5 Years")
|
87 |
plt.xlabel("Year")
|
88 |
plt.ylabel("GDP in Trillions USD")
|
@@ -91,11 +134,17 @@ def run_langgraph(input_text):
|
|
91 |
plt.savefig("gdp_chart.png")
|
92 |
return "Chart generated based on FINAL ANSWER.", "gdp_chart.png"
|
93 |
else:
|
94 |
-
|
|
|
|
|
|
|
95 |
except Exception as e:
|
|
|
|
|
|
|
96 |
return f"Error: {str(e)}", None
|
97 |
|
98 |
-
# Gradio
|
99 |
def process_input(user_input):
|
100 |
return run_langgraph(user_input)
|
101 |
|
|
|
3 |
import matplotlib.pyplot as plt
|
4 |
import pandas as pd
|
5 |
from langgraph.graph import StateGraph
|
6 |
+
from langgraph_core.state import MessagesState
|
7 |
+
from langchain_core.messages import HumanMessage, AIMessage
|
8 |
from langchain_anthropic import ChatAnthropic
|
9 |
+
import warnings
|
10 |
+
warnings.filterwarnings("ignore")
|
11 |
|
12 |
+
# Define a Command class for langgraph 0.0.41
|
13 |
class Command:
|
14 |
def __init__(self, update=None, next=None, goto=None):
|
15 |
self.update = update or {}
|
16 |
self.next = next
|
17 |
self.goto = goto
|
18 |
|
19 |
+
# Set API key (ensure you add this as a secret in HF Spaces)
|
20 |
+
api_key = os.getenv("ANTHROPIC_API_KEY")
|
21 |
+
if not api_key:
|
22 |
+
raise ValueError("ANTHROPIC_API_KEY environment variable not set")
|
23 |
|
24 |
+
# Load Claude 3.5 Sonnet model
|
25 |
+
# Using a direct approach to avoid proxies issue
|
26 |
+
try:
|
27 |
+
# Explicitly create with minimal parameters
|
28 |
+
llm = ChatAnthropic(api_key=api_key, model="claude-3-5-sonnet-20240229")
|
29 |
+
except Exception as e:
|
30 |
+
print(f"Error initializing ChatAnthropic: {e}")
|
31 |
+
# Fallback initialization if needed
|
32 |
+
import anthropic
|
33 |
+
client = anthropic.Anthropic(api_key=api_key)
|
34 |
+
llm = ChatAnthropic(client=client, model="claude-3-5-sonnet-20240229")
|
35 |
|
36 |
+
# System prompt constructor
|
37 |
def make_system_prompt(suffix: str) -> str:
|
38 |
return (
|
39 |
+
"You are a helpful AI assistant, collaborating with other assistants. "
|
40 |
+
"Use the provided tools to progress towards answering the question. "
|
41 |
+
"If you are unable to fully answer, that's OK—another assistant with different tools "
|
42 |
+
"will help where you left off. Execute what you can to make progress. "
|
43 |
+
"If you or any of the other assistants have the final answer or deliverable, "
|
44 |
+
"prefix your response with FINAL ANSWER so the team knows to stop.\n"
|
45 |
+
f"{suffix}"
|
46 |
)
|
47 |
|
48 |
+
# Research phase
|
49 |
def research_node(state):
|
50 |
+
# Create a custom research agent using langgraph 0.0.41 compatible approach
|
51 |
+
from langgraph.prebuilt import create_agent_executor
|
52 |
agent = create_agent_executor(
|
53 |
llm,
|
54 |
tools=[],
|
55 |
+
system_message=make_system_prompt("You can only do research.")
|
56 |
)
|
57 |
+
|
58 |
+
# Process the current state
|
59 |
result = agent.invoke(state)
|
60 |
+
|
61 |
+
# Check if we have a final answer
|
62 |
+
last_message = result["messages"][-1]
|
63 |
+
content = last_message.content if hasattr(last_message, "content") else last_message
|
64 |
+
|
65 |
# Determine next step
|
66 |
+
goto = "chart_generator" if "FINAL ANSWER" not in content else "__end__"
|
67 |
+
|
68 |
+
# Create an AIMessage with the researcher name
|
69 |
+
if not isinstance(last_message, dict):
|
70 |
+
result["messages"][-1] = AIMessage(content=content, name="researcher")
|
71 |
+
else:
|
72 |
+
result["messages"][-1]["name"] = "researcher"
|
73 |
+
|
74 |
return Command(update={"messages": result["messages"]}, goto=goto)
|
75 |
|
76 |
+
# Chart generation phase
|
77 |
def chart_node(state):
|
78 |
+
# Create a custom chart generator agent
|
79 |
+
from langgraph.prebuilt import create_agent_executor
|
80 |
agent = create_agent_executor(
|
81 |
llm,
|
82 |
tools=[],
|
83 |
system_message=make_system_prompt("You can only generate charts.")
|
84 |
)
|
85 |
+
|
86 |
+
# Process the current state
|
87 |
result = agent.invoke(state)
|
88 |
+
|
89 |
+
# Add the chart_generator name
|
90 |
+
last_message = result["messages"][-1]
|
91 |
+
content = last_message.content if hasattr(last_message, "content") else last_message
|
92 |
+
|
93 |
+
if not isinstance(last_message, dict):
|
94 |
+
result["messages"][-1] = AIMessage(content=content, name="chart_generator")
|
95 |
+
else:
|
96 |
+
result["messages"][-1]["name"] = "chart_generator"
|
97 |
+
|
98 |
return Command(update={"messages": result["messages"]}, goto="__end__")
|
99 |
|
100 |
+
# Build LangGraph
|
101 |
+
workflow = StateGraph(dict) # Using dict for state in langgraph 0.0.41
|
102 |
workflow.add_node("researcher", research_node)
|
103 |
workflow.add_node("chart_generator", chart_node)
|
104 |
workflow.set_entry_point("researcher")
|
|
|
107 |
graph = workflow.compile()
|
108 |
|
109 |
# LangGraph runner
|
110 |
+
def run_langgraph(user_input):
|
111 |
try:
|
112 |
+
# Create a human message
|
113 |
+
human_message = HumanMessage(content=user_input)
|
114 |
+
|
115 |
+
# Stream the events
|
116 |
+
events = graph.stream({"messages": [human_message]})
|
117 |
+
outputs = list(events)
|
118 |
+
|
119 |
+
# Get the final message
|
120 |
+
final_message = outputs[-1]["messages"][-1]
|
121 |
+
final_content = final_message.content if hasattr(final_message, "content") else final_message
|
122 |
+
|
123 |
+
if isinstance(final_content, str) and "FINAL ANSWER" in final_content:
|
124 |
+
# Simulated chart (you can later parse dynamic values if needed)
|
125 |
years = [2020, 2021, 2022, 2023, 2024]
|
126 |
gdp = [21.4, 22.0, 23.1, 24.8, 26.2]
|
127 |
plt.figure()
|
128 |
+
plt.plot(years, gdp, marker='o')
|
129 |
plt.title("USA GDP Over Last 5 Years")
|
130 |
plt.xlabel("Year")
|
131 |
plt.ylabel("GDP in Trillions USD")
|
|
|
134 |
plt.savefig("gdp_chart.png")
|
135 |
return "Chart generated based on FINAL ANSWER.", "gdp_chart.png"
|
136 |
else:
|
137 |
+
if isinstance(final_content, str):
|
138 |
+
return final_content, None
|
139 |
+
else:
|
140 |
+
return str(final_content), None
|
141 |
except Exception as e:
|
142 |
+
print(f"Error in run_langgraph: {e}")
|
143 |
+
import traceback
|
144 |
+
traceback.print_exc()
|
145 |
return f"Error: {str(e)}", None
|
146 |
|
147 |
+
# Gradio UI
|
148 |
def process_input(user_input):
|
149 |
return run_langgraph(user_input)
|
150 |
|